Synthesis and Structural Characterization of Schiff Base Ligand and their Metal Complexes

AMIT KUMAR GAUTAM ${ }^{1}$, ARUN KUMAR ${ }^{2}$, KAUSHLENDRA SHARMA ${ }^{3}$ and B. K. RAI*
${ }^{1}$ Department of Chemistry, L.N.T. College, Muzaffarpur,842002,IIdia. ${ }^{2}$ Department of Chemistry, K.C.T.C. College, Raxaul,India. ${ }^{3}$ Birla Institute of Technology, Patna Campus, Patna,800004,India. *Corresponding author E-mail: binodkr_rai@yahoo.co.in
http://dx.doi.org/10.13005/ojc/320251

(Received: February 18, 2016; Accepted: March 23, 2016)

Abstract

In the present work, the synthesis and structural characterization of a 2-phenyl-3(benzamido propyl) quinazoline (3 H) -4 - one semicarbazone/ thiosemicarbazone hydrochloride and its metal complexes have been reported. All the synthesized compounds were characterized by using various physico-chemical techniques such as Infrared spectra, electronic spectra, molar conductivity and magnetic susceptibility measurements. The ligand and metal ions reacted to form in the 2:1 ratio as found from the elemental analyses and general stiochiometry was determined, [M(PBPQS) X_{2}] and $\left[\mathrm{M}(\mathrm{PBPQT})_{2} \mathrm{X}_{2}\right]$; where $\mathrm{M}=\mathrm{Co}(\mathrm{II}), \mathrm{Ni}(\mathrm{II})$ and $\mathrm{Cu}(\mathrm{II})$; PBPQS $=2$-phenyl- 3 (benzamido propyl) quinazoline $(3 \mathrm{H})-4$ - one semicarbazone and PBPQT $=2$ - phenyl- 3 (benzamido propyl) quinazoline $(3 \mathrm{H})-4$ - one thiosemicarbazone. On the basis of analytical data, a proposed structure for the $\mathrm{Cu}(\mathrm{II})$ complexes are distorted octahedral and those for $\mathrm{Co}(\mathrm{II})$ and $\mathrm{Ni}(\mathrm{II})$ complexes are octahedral. Ligands PBPQS/ PBPQT have been proposed to act in a bidentate manner co-ordinating to the metal ions though azomethine nitrogen and oxygen/ sulphur atom of either semicarbazone/ thiosemicarbazone moiety. The remaining co-ordination sites are occupied by negative ions such as $\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$ or NO_{3}. The ligands and its metal complexes were tested for their possible antimicrobial potentials.

Keywords: PBPQS/ PBPQT/ Co(II), Ni(II), Cu(II)/ Schiff base/ Antimicrobial studies.

INTRODUCTION

In recent years, ${ }^{1-10}$ there has been considerable interest in the chemistry of transition metal of schiff base. This is due to the fact that schiff base transition metal complexes are one of the most adaptable and thoroughly studied systems. The Schiff base complexes have applicable in clinical and analytical fields. They are used as model molecule for
biological oxygen carrier systems. Schiff bases metal complexes also exhibit several biocidal potential such as antifungal, anti-cancer, herbicidal and antibacterial. Because of their ease in preparation and versatile properties, herein; the syntheses, structural features, spectroscopic characterization of metal complexes of $\mathrm{Co}(\mathrm{II}), \mathrm{Ni}(\mathrm{II}), \mathrm{Cu}(\mathrm{II})$ with Schiff bases, 2-Phenyl 3(benzamido propyl) quinazoline (3H)-4-one semicarbozone and 2-phenyl-3(benzamido
propyl) quinazoline (3H)-4-one thiosemicarbozone are reported.

EXPERIMENTAL

Physical Measurement

All the chemicals and solvents were of reagent grade and were used without further purification.

The ligand and metal complexes were analysed using standard procedure. Analytical data were collected on Perkin-Elmer-2400 CHNO/S elemental analyzer. Infrared spectra were recorded on Parkin-Elmer spectrometer model-577 using KBr disc. Electronic spectra was measured on Cary-2390 spectrophotometer. Molar conductance was using a Systronics conductivity meter model 303 using Ca $10^{-3} \mathrm{M}$ solutions in DMF. Magnetic susceptibility of the samples were made on Guoy balance using mercury tetraisothiocynato cobaltate as a calibrant.

Synthetic Procedure
 Preparation of the bidentate Schiff base ligand PBPQS/PBPQT

The compound 2-phenyl-3-(benzamido propyl) quinazolin (3H)-4-one was synthesized by earlier reported method. Ethanolic solution 2-phenyl-3-(benzamido propyl) quinazolin(3H) 4-one was allowed to react with Semicarbazide/ thiosemicarbazide hydrochloride dissolved in 10\% ethanolic solution of Sodium acetate. The resulting mixture were heated on water bath for 3-4 hr with frequent stirring. After cooling the precipitate was collected, washed with tetrahydrofuran, treated with dilute sodium carbonate solution and filtered. The solid was washed with water and crystallised twice from ethanol to furnish 2-phenyl-3-benzamido propyl) quinazoline (3H) 4-one semicarbazone/ thiosemicarbazone as colourless compounds m.p. $262 \pm 1^{\circ} \mathrm{C}$ for ligand PBPQS and $273 \pm 1^{\circ} \mathrm{C}$ for ligand PBPQT yield, 70%.

Preparation of the complexes

The compounds of $\mathrm{Co}(\mathrm{II}), \mathrm{Ni}(\mathrm{II})$ and $\mathrm{Cu}(\mathrm{II})$ have been formed by reacting an ethanolic solutions of metal halides/nitrates with ethanolic solutions of the ligand PBPQS/PBPQT in molar ratio 1:2. The resulting reaction mixtures were heated on water bath for 2-3 hours. The solid coloured complexes
which separated out on cooling were filtered, washed with ethanol, dried and recrystallised with tetrahydrofuran; yield in all cases 65-70\%.

RESULTS AND DISCUSSION

Infrared Spectral Studies

The IR data of the spectra of the ligand PBPQS/PBPQT and its Co (II), $\mathrm{Ni}(\mathrm{II})$ and $\mathrm{Cu}(\mathrm{II})$ complexes are listed in Table-1. The characteristic IR band for the free ligands, when compared with those of their complexes provide meaningful information regarding the bonding sites of the ligand.

Semicarbazine/ thiosemicarbazone ligands can coordinate as bidentate ligands, in most cases through the azomethine nitrogen and oxygen/sulphur atom of either semicarbazone/ thiosemicarbazone. In the free ligands PBPQS/PBPQT the $v_{\mathrm{C}=\mathrm{N}}$ bands appear in the region of $1645-1635 \mathrm{~cm}^{-1}$. In all the complexes, the $v_{\mathrm{C}=\mathrm{N}}$ band is shifted to lower frequency in the range. 1620-1605 cm^{-1}, indicating coordination of the Schiff bases through the azomethine nitrogen atom ${ }^{11}$. This is further supported by the appearance of a far IR band in the range 420-390 cm^{-1} in the complexes which may be assigned ${ }^{12}$ to v_{M-N}.

The IR spectrum of the ligand PBPQS exhibit strong and broad band at $1720 \mathrm{~cm}^{-1}$ assigned ${ }^{11}$ to $v_{\mathrm{C}=0}$. This band undergoes red shift after complexation proposes co-ordination through carbonyl oxygen atom of semicarbozone moiety. It is further supported by the appearance of a new band in far IR region at $520-505 \mathrm{~cm}^{-1}$ assigned ${ }^{12}$ to $v_{\mathrm{M}-\mathrm{O}}$.

The spectrum of the ligand PBPQT shows a sharp and strong band at $820 \mathrm{~cm}^{-1}$ assigned ${ }^{11}$ to $v_{\mathrm{C}=\mathrm{s}}$. In the spectra of the complexes this band shows red shift proposes coordination through thione sulphur. This is further supported by the appearance of a far IR band in the region at $480-455 \mathrm{~cm}^{-1}$, assigned ${ }^{12}$ to $v_{\text {M-S }}$.

The co-ordination through halogen atom is confirmed by the appearance of a band in the far IR region at $315-255 \mathrm{~cm}^{-1}$ assigned ${ }^{12}$ to $v_{M-X}(X=$ $\left.\mathrm{Cl}, \mathrm{Br}^{\prime}, \mathrm{l}\right)$. The evidence of metal halogen linkage is further confirmed on the basis of low value of molar conductance measurements of complexes in the range 4.7-11.2 $\mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ (Table-1). Nitrate

Table 1:Analytical And Physical Data Of The Ligand PBPQS/ PBPQT And Its Metal Complexes

Compounds (Colour)	Molar \% Mass	Analysis found (Calculated)				$\begin{aligned} & \text { D.T. } \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} \boldsymbol{\mu}_{\text {eff }} \\ \text { (B.M.) } \end{gathered}$	$\begin{aligned} & \Omega_{\mathrm{m}} \text { ohm }^{-1} \quad \lambda_{\text {max }} \\ & \text { cm }^{2} \text { mol }^{-1} \text { electronic } \\ & \text { cm }^{-1} \end{aligned}$	
		M	C	N	H				
PBPQS	472		60.83	17.70	4.97				
Colourless			(61.01)	(17.79)	(5.08)				
PBPQT	488		58.87	17.12	4.86				
(Colourless)			(59.01)	(17.21)	(4.91)				
[Co(PBPQS $\left.)_{2} \mathrm{Cl}_{2}\right]$	1073.93	5.37	53.41	15.58	4.40	236	5.06	6.7	13640,
Yellowish red		(5.49)	(53.63)	(15.64)	(4.46)				19760
[$\left.\mathrm{Co}(\mathrm{PBPQT})_{2} \mathrm{Cl}_{2}\right]$	1105.93	5.24	51.84	15.08	4.28	242	5.01	6.1	13470,
Yellowish red		(5.32)	(52.08)	(15.19)	(4.34)				19280
[Co(PBPQS) ${ }_{2} \mathrm{Br}_{2}$]	1162.748	4.93	49.38	14.33	4.08	227	4.89	6.9	12810,
Reddish yellow		(5.06)	(49.53)	(14.44)	(4.12)				19640
[Co(PBPQT) ${ }_{2} \mathrm{Br}_{2}$]	1194.748	4.87	48.09	13.97	3.96	238	4.94	6.2	12930,
Reddish yellow		(4.93)	(48.21)	(14.06)	(4.01)				20100
[Co(PBPQS $2_{2} \mathrm{I}_{2}$]	1256.73	4.59	45.70	13.23	3.77	220	4.98	6.4	12960,
Deep yellow		(4.68)	(45.83)	(13.36)	(3.81)				21200
[Co(PBPQT) $\left.{ }_{2} \mathrm{I}_{2}\right]$	1288.73	4.48	44.53	12.90	3.68	248	4.93	6.3	13010,
Deep yellow		(4.57)	(44.69)	(13.03)	(3.72)				20740
[Co(PBPQS $\left.)_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]$	1126.93	5.14	50.98	144.78	4.20	214	5.12	6.8	13220,
Yellowish red		(5.22)	(51.11)	(14.90)	(4.25)				20960
[Co(PBPQT) $\left.2_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]$	1158.93	4.96	49.53	14.36	4.09	209	5.09	6.6	13270,
Yellowish red		(5.08)	(49.70)	(14.49)	(4.14)				19730
$\left[\mathrm{Ni}(\mathrm{PBPQS})_{2} \mathrm{Cl}_{2}\right.$]	1073.71	5.33	53.40	15.56	4.43	253	3.11	4.7	10640,
Brown		(5.46)	(53.64)	(15.64)	(4.47)				15210,
									24390
$\left[\mathrm{Ni}(\mathrm{PBPQT})_{2} \mathrm{Cl}_{2}\right]$	1105.71	5.22	51.86	15.06	4.29	234	3.09	4.1	10560,
Brown		(5.30)	(52.09)	(15.19)	(4.34)				15340,
									24580
$\left[\mathrm{Ni}(\mathrm{PBPQS})_{2} \mathrm{Br}_{2}\right]$	1162.52	4.92		14.32		213	3.07	4.9	10580,
Brown		(5.05)	(49.54)	(14.45)	(4.12)				15240,
									24600
$\left[\mathrm{Ni}(\mathrm{PBPQT})_{2} \mathrm{Br}_{2}\right]$	1194.52	4.85	48.06	13.96	3.95	238	3.04	4.89	10320,
Deep red		(4.91)	(48.22)	(14.06)	(4.01)				15710,
									24520
[$\left.\mathrm{Ni}(\mathrm{PBPQS})_{2} \mathrm{I}_{2}\right]$	1256.51	4.60	45.72	13.24	3.78	256	3.06	4.64	10430,
Deep yellow		(4.68)	(45.85)	(13.37)	(3.82)				15460,
									14380
[$\left.\mathrm{Ni}(\mathrm{PBPQT})_{2} \mathrm{I}_{2}\right]$	1288.51	4.49	44.54	12.91	3.67	248	3.12	5.10	10100,
Red		(4.55)	(44.70)	(13.03)	(3.72)				15840,
									24320
$\left[\mathrm{Ni}(\mathrm{PBPQS})_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]$	1126.71	5.14	51.01	14.77	4.02	270	3.17	5.2	10210,
Reddish brown		(5.21)	(51.12)	(14.91)	(4.26)				15740,
									24380
$\left[\mathrm{Ni}(\mathrm{PBPQT})_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]$	1158.71	4.94	49.54	14.37	4.10	261	3.15	5.6	10380,
Reddish brown		(5.06)	(49.71)	(14.449)	(4.14)				15900,

$\left[\mathrm{Cu}(\mathrm{PBPQS})_{2} \mathrm{Cl}_{2}\right]$	1078.54	5.80	53.22	15.49	4.39	280	1.89	11.2	12310,
Blue		(5.89)	(53.40)	(15.57)	(4.45)				17480
$\left[\mathrm{Cu}(\mathrm{PBPQT})_{2} \mathrm{Cl}_{2}\right]$	1110.54	5.63	51.72	18.51	4.26	276	1.98	10.8	12240,
Blue		(5.72)	(51.86)	(18.65)	(4.32)				17320
[Cu(PBPQS $)_{2} \mathrm{Br}_{2}$]	1167.35	5.36	49.22	13.88	4.02	268	1.90	10.2	12140,
Blue		(5.44)	(49.34)	(14.00)	(4.11)				17540
[Cu(PBPQT) $2_{2} \mathrm{Br}_{2}$]	1199.35	5.20	47.83	13.84	6.61	255	1.92	11.3	12540,
Blue		(5.29)	(48.02)	(14.00)	(6.67)				17610
$\left[\mathrm{Cu}(\mathrm{PBPQS})_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]$	1131.54	5.52	50.79	14.72	4.19	260	1.94	9.8	12620,
Deep blue		(5.61)	(50.90)	(14.84)	(4.24)				17520
$\left[\mathrm{Cu}(\mathrm{PBPQT})_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]$	1163.54	5.37	49.33	14.32	4.07	268	1.93	9.4	12480,
Deep blue		(5.46)	(49.50)	(14.43)	(4.12)				17460

Table 2: Salient Features Of IR Spectral Data For Ligand And Its Metal Complexes

Compounds	$v_{\mathrm{C}=\mathrm{o}}$	$v_{\mathrm{C}=\mathrm{N}}$	$v_{\mathrm{C}=\mathrm{s}}$	$v_{\mathrm{M}-\mathrm{o}}$	$v_{\mathrm{M}-\mathrm{s}}$	$v_{\mathrm{M}-\mathrm{N}}$	$v_{\mathrm{M}-\mathrm{x}}$
PBPQS	$1720 \mathrm{~s}, \mathrm{~b}$	$1635 \mathrm{~s}, \mathrm{~b}$					
PBPQT		$1645 \mathrm{~s}, \mathrm{~b}$	$820 \mathrm{~s}, \mathrm{~b}$				
[Co(PBPQS$\left.)_{2} \mathrm{Cl}_{2}\right]$	$1690 \mathrm{~m}, \mathrm{~b}$	$1605 \mathrm{~m}, \mathrm{~b}$		505 m		405 m	255 m
[Co(PBPQT) $\left.\mathrm{Cl}_{2}\right]$							

complexes show characteristic medium intensity bands at 1260 and $1100 \mathrm{~cm}^{-1}$ with a separation of $160 \mathrm{~cm}^{-1}$ due to monodentate linkage of nitrate group. Combination bands at 1660 and $1640 \mathrm{~cm}^{-1}$ with a separation of $20 \mathrm{~cm}^{-1}$ confirming the monodentate behavior of the nitrate group.

On the basis of above discussion on IR spectral data it is proposed that the ligand PBPQS/ PBPQT acts in a neutral bidentate manner. The remaining coordination positions of metal ions are satisfied by negative ions, such as $\mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{l}^{-}$and $\mathrm{NO}_{3}{ }^{-}$

Fig. 1: $\left[\mathrm{M}(\mathrm{PBPQS})_{2}\right] \mathrm{X}_{2}$ and $\left[\mathrm{M}(\mathrm{PBPQT})_{2}\right] \mathrm{X}_{2} \mathrm{M}=\mathrm{Co}(\mathrm{II}), \mathrm{Ni}(\mathrm{II})$ and $\mathrm{Cu}(\mathrm{II}) ; \mathrm{X}=\mathrm{Cl}$, Br , I^{-}and $\mathrm{NO}_{3}^{-} ; \mathrm{Y}=\mathbf{O x y g e n}$ or Sulphur; $\mathrm{R}=$ Phenyl; R = benzamido propyl

Electronic spectra and magnetic susceptibility of the complexes

The electronic spectra of all the complexes have been recorded in the region 10000-25000 cm^{-1}. The Co (II) complexes exhibit two bands in the regions at 13470-12870 cm^{-1} and 21200-19280 cm^{-1} assigned to the transitions; ${ }^{4} \mathrm{~A}_{2 g}(\mathrm{~F}) \leftarrow{ }^{4} \mathrm{~T}_{19}(\mathrm{~F})$ and ${ }^{4} \mathrm{~T}_{19}(\mathrm{P}) \leftarrow{ }^{4} \mathrm{~T}_{19}(\mathrm{~F})$ respectively, proposing octahedral geometry for $\mathrm{Co}(\mathrm{II})$ complexes.

The octahedral geometry for Co(II) complexes are further supported by the high magnetic susceptibility in the range 4.89-5.12 BM. The $\mathrm{Ni}(\mathrm{II})$ complexes exhibit three spectral bands in the region, 10800-10100 $\mathrm{cm}^{-1}, 15900-15200 \mathrm{~cm}^{-1}$ and $24600-24000 \mathrm{~cm}^{-1}$ assigned to the transitions, $;{ }^{3} \mathrm{~T}_{29}(\mathrm{~F}) \leftarrow{ }^{3} \mathrm{~A}_{2 g}(\mathrm{~F}),{ }^{4} \mathrm{~T}_{19}(\mathrm{~F}) \leftarrow{ }^{3} \mathrm{~A}_{2 g}(\mathrm{~F})$ and ${ }^{4} \mathrm{~T}_{19}(\mathrm{P})$ $\leftarrow{ }^{3} \mathrm{~A}_{2 g}(F)$ respectively, proposing octahedral geometry for $\mathrm{Ni}(\mathrm{II})$ complexes. The proposed geometry of Ni (II) complexes is further supported by the magnetic susceptibility value in the range 3.043.17 BM. The Cu(II) complexes exhibit two spectral bands in the regions, $12600-12100 \mathrm{~cm}^{-1}$ and 17900$17300 \mathrm{~cm}^{-1}$ assigned to the transitions, ${ }^{2} \mathrm{~T}_{2 \mathrm{~g}} \leftarrow{ }^{2} \mathrm{E}_{\mathrm{g}}$ and
charge transfer band which proposing octahedral geometry for $\mathrm{Cu}(I I)$ complexes. The magnetic value of $\mathrm{Cu}(\mathrm{II})$ complexes lies in the range 1.89-1.98 B.M.

Conductivity Measurement

Molar conductance of the complexes was measured in solvent dimethyl formamide. All the complexes have conductivity value in the range of $4.7-11.2 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ indicating their non-electrolyte behaviour.

CONCLUSION

Thus on the basis of above physicochemical studies it is concluded that the ligand PBPQS/PBPQT acts in a neutral bidentate manner and coordination is proposed through azomethine nitrogen and through carbonyl oxygen atom or sulphur atom of semicarbazone/ thiosemicarbazone moiety. The remaining position of metal ion is satisfied by negative ions such as $\mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}$and No_{3}. The geometry of the $\mathrm{Co}(\mathrm{II}), \mathrm{Ni}(\mathrm{II})$ and $\mathrm{Cu}(\mathrm{II})$ are proposed to be octahedral in nature as shown in Fig. 1.

REFERENCES

1. Ragab, R. Amin; Asian J. Chem, 2000, 12, 394-354.
2. Prasad, N.B.L. and Hssain, K. Reddy; J. Indian Chem. Soc., 2004, 81, 794-796.
3. Mehta, B. H. and Shaikh, J.A.; J. Indian Chem.

Soc., 2009, 26, 1-6.
4. Kumar, Brajesh; Sangal, S.K. and Kumar Arun; J. Indian Chem. Soc., 2009, 86, 514-517.
5. Ramachary, M.; Padmaja, N.; Ravinder, M. and Srihari, S.; Orient J. Chem., 2010, 26,

1159-1162.
6. Shakti, Shiva; Mishra, P.M.; Mishra, Satyendra Kumar and Jha, Ajay Kumar; Asian J. Chem, 2010, 22, 5013-5018.
7. Raghav, N.; Kaur, Ravider; Singh, Mamta; Suman and Priyanka; Asian J. Chem., 2010, 22, 7097-7101.
8. Elyas, Mohammad and Siddiqui, Ashan Rasheed; Orient J. Chem., 2011, 27, 627632.
9. Tyagi, Monika and Chandra Sulekh; J. Indian Chem. Soc., 2012, 89, 147-154.
10. Anitha P.; Manikanandan, R.; Vijayan, P.; Prakash, G.; Viswanathmurthi, P. and Butcher Ray Jay; J. Chem. Sci., 2015, 127, 597-608.
11. Esmati, N.; Yousifi, M.; Shafiee, A. and Foroumadi, A.; Asian J. Chem, 2011, 23, 4011-4013.
12. Ali, Ahmed Mohammed Fakruddin and Moahammadyunis, V.; Orient J. Chem, 2014, 30, 111-117.

