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Abstract

	 The main objective of this research work was to investigate three-dimensional free vibration of 
thick annular plates which are composed of carbon nanotube (CNT) reinforced composites materials 
using the Chebyshev–Ritz method. In order to obtain precise results, a new form of the rule of mixtures 
including an exponential shape function, length efficiency parameter, orientation efficiency factor, 
and waviness parameter was applied for predicting the mechanical properties of CNT reinforced 
composites. Convergence of the Chebyshev–Ritz method was also checked. Numerical results are 
given and compared with the available literature and finite element method (FEM) analysis. Results 
obtained from the other well-known theories (such as: Micro-Mechanical, Halpin, etc.) are compared 
with the new form of the rule of mixtures results. Furthermore, the effects of CNT type, structures, 
diameter, shape factor, density, and volume fraction on the vibration behavior of the annular plates 
are graphically presented.

Keywords: Nanocomposites, Modified rule of mixtures theory, Annular plates, 
Chebyshev -Ritz method, vibration analysis.

Introduction

	 In recent years astonishing advances in 
science and technology have motivated researchers 
to work on new structural materials possessing 
high strength to weight ratio. Carbon nanotube 

(CNT) reinforced polymer composites are one of 
these advanced materials, having many attractive 
applications in mechanical, chemical, electrical, 
optical, aeronautics, astronautics, and biomechanical 
industries.
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	 A review of existing literature on the 
mechanical properties of CNT reinforced polymer 
composites demonstrates that many studies have 
been done recently e.g.,1–11. Significant improvements 
in mechanical properties of polymeric matrixes have 
been reported by adding a few weight-percents (wt%) 
of CNTs. 

	 Although a lot of parameters such as 
dispersion methods, type of CNTs, weight percentage 
of CNTs relative to matrix, etc., can affect the 
mechanical properties of composites; all in all it has 
been quite evident that added stiffness versus added 
mass unit is undeniably exceptional, which is very 
interesting for free vibration analysis. Technically 
speaking, composites annular plates are widely 
used in industrial structural elements. There are large 
number of research papers and reviews on the free 
vibration analyses of isotropic annular plates 12-19. A 
few researchers have analyzed vibration and static 
behavior of nanocomposites plates 20-23.

	 During the last decade, several research 
groups have presented theoretical models to predict 
mechanical properties of CNT reinforced polymer 
composites. An excellent survey of the research work 
on the different modeling techniques as proposed 
for predicting the mechanical behavior of polymer 
composites has been published by Valavala and 
Odegard 24. The micromechanical model is one of 
the renowned methods extensively used to predict 
elastic properties of CNT/polyimide composites 
in lot of articles 25-28. Mechanical properties of 
high density polyethylene composites reinforced 
with CNTs were presented by Kanagaraj et al. 29. 
They employed both the Halpin-Tsai model and a 
modified form of the rule of mixture model to make 
a comparison between theoretical and experimental 
results. Bokobza 30 used the Guth and the Halpin-
Tsai predictions to compare her experimental values 
obtained for the Young’s modulus of MWCNTs/
elastomeric composites with those predicted by the 
models. All proposed models (e.g. micromechanical, 
Halpin-Tsai and rule of mixture) used, for instance, in 
refs 25-30, are valid only for low wt% of CNTs, where 
the variation of the Young’s modulus of CNT/polymer 
composites versus wt% of CNTs is almost linear. 
However, it is well known that there exists a nonlinear 
relationship between mechanical properties of CNT/
polymer composites and volume fraction of CNTs. 

According to a comprehensive survey of literature, 
various authors have found that relatively little work is 
available on new micromechanics models, enabling 
us to properly predict the mechanical properties of 
CNT/polymer composites for both low and high wt% 
of CNTs. M. Omidi et al. 31 investigated the effect of 
MWCNT content on the mechanical properties of 
epoxy composites. They modified the rule of mixture 
model by introducing a length efficiency parameter, 
orientation efficiency factor and waviness parameter 
to the model. This model predicted the mechanical 
properties of nanocomposites for both low and high 
wt% of Carbon nano tubes.

	 In this paper, a three-dimensional (3-D) 
free vibration analysis of CNT-reinforced composite 
annular plates with different combinations of 
boundary conditions at the inner and outer edges 
of the annular plate is presented on the basis of 
the Chebyshev-Ritz method. In order to achieve 
more reliable and precise results, the mechanical 
properties of the nanocomposites were obtained 
through a modified rule of mixtures theory 31. The 
validity and the range of applicability of the results 
obtained based on the other well-known theories 
(such as: Micro-Mechanical, Halpin Tesai and etc.) 
were studied by comparing them with those obtained 
by the modified rule of mixtures. Moreover, the 
influence of the CNT type (single wall or multi wall), 
structures (zigzag or armchair), diameter, shape 
factor, density and volume fraction on the frequency 
parameters of the plate was also studied.

Theoretical formulation
	 Consider a thick composite annular plate 
with outer radius, inner radius and thicknesses 
as depicted in Fig. 1. The plate geometry and 
dimensions were defined in an orthogonal cylindrical 
co-ordinate system ( , , )r zq .

Theory of fiber reinforced composite materials
Micromechanical Mori–Tanaka equations
	 A rather simple and accurate micromechanics 
method is Mori–Tanaka method 32. It assumes each 
inclusion in the infinite pristine matrix loaded by an 
effective stress that equals the average stress over 
the matrix. The effective moduli of inclusion-dispersed 
composites may be easily derived with good accuracy 
even for a high volume fraction of inclusions. For a 
composite reinforced by nanoparticles, this method 
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leads to the effective Young’s modulus Ec, bulk 
modulus Kc and shear modulus Gc as:
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	 where  υm  the Poisson’s ratio of the matrix 
and, K and G denote the bulk modulus and the shear 
modulus, the subscripts ‘‘m” and ‘‘NT” stand for matrix 
and nanoparticulate, respectively.
 
The Halpin-Tsai equations
	 One of the equations which is frequently 
used for modeling the mechanical behavior of 
nanocomposites is the Halpin-Tsai equation which 
can be written as equation (2).
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	 In which c=2(l/d) is a constant shape factor 
related to the aspect ratio of the reinforcement 
length l and diameter d. Also, EM , ENT , and VNT 
are the modulii of matrix, CNT, and the volume 
fraction of nanotubes, respectively. Parameter α is 
an orientation factor which was later introduced by  
Cox 33. For the random oriented in two dimensions 
α =1/3, and for the random oriented in three 
dimensions α =1/6.

The rule of mixtures equations
	 For a composite with uniaxial reinforcement 
and under constant strain conditions, the dependence 
of the elastic modulus on the long fiber like CNTs 
volume fraction can be estimated by the rule-of-
mixture as follows:
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	 W h e r e  / ( )C M C M ME E E E= −  a n d 

/NT M NT ME E E= .  takes a value between 0 and 1, 
and can be determined by: 

tanh1l
λτk

λτ
= −  in which 2  ,l

d
λ =  , 

/

2
(1 ) ln( )NT M m NTE V

τ
ν
−

=
−

	 where λ is the CNT aspect ratio. The 
parameter lk  approaches 1 for large volume fractions 
of high aspect ratio CNTs. 

The modified rule of mixtures theory
	 According to the experimental data reported 
in the literature 31-40, when the volume fraction of 
CNTs takes larger values a nonlinear trend for the 
elastic modulus can be seen. As a consequence, the 
new form of the rule of mixtures can be expressed 
as
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parameter having the hat ^ should experimentally 
be determined by a tensile test for a given wt% of 
CNTs. In other words, the value of the parameter 
a is determined by testing only one tensile CNT 
composite specimen 31. 

Energy and frequency equations
	 The constituent equation for the circular 
plate is:

[ ] { }[ ]åSó = 	 ...(5)

	 Where σ, S, and ε represent the stress 
tensor, compliance tensor, and strain tensor, 
respectively. Eq. 5 shows the relationship between 
stress and strain.

	 For free vibrations, the displacement 
components of a three-dimensional elastic body may 
be expressed as 
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	 Where t is the time, ω denotes the natural 
frequency of vibration and 1j = − . Also, u, v, and w 
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Fig. 1: Geometry and dimensions of an annular 
plate

Table 1: Mechanical properties of the carbon 
nanotubes and matrix31

Mechanical 	 SWNTs	 MWNTs	 Matrix 
properties			   (LY-5052)

Diameter (nm)	 10	 25	 -

11
nE  

(GPa)	 1200	 1000	 3.11

22
nE  

(GPa)	 6.63	 15.58	 3.11

12
nG  

(GPa)	 442	 320	 1.2

13
nG

 
(GPa)	 17	 4.1	 1.2

12
nν 	 0..20	 0.25	 0.35

nρ  
(kg/m3)	 1350	 1250	 1100

are referred to displacement components along the 
radial, tangential, and axial directions, respectively. 
ψ1, ψ2 and ψ3 are unknown displacement functions 
in the r, è, and z directions, respectively.

	 Considering the cylindrical symmetry 
of the circular plate about the coordinate q, the 
displacement amplitude functions can be written 
as: 
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	 Where  the  non-nega t i ve  i n tege r  
n represents the circumferential wave number of 
the corresponding mode shape. It is obvious that 
n=0 leads to an axisymmetric vibration. Rotating the 

symmetry axes by π/2, another set of free vibration 
modes can be obtained, corresponding with an 
interchange between cos (nθ) and sin (nθ) in Eq. (7); 
however, in such a case, n=0 represents a torsional 
vibration. ψ is the displacement function in the r and 
z coordinates.

	 To simplify the equations, the following 
dimensionless parameters are introduced:
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	 Using the displacement field given in 
equation (6), the strain components εij (i,j=r,θ,z) for 
small deformations are defined as follows
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	 The strain (potential) energy V of a three-
dimensional elastic circular plate undergoing free 
vibration in circumferential coordinates is expressed 
in terms of the strains (εij) and the stress (σij) as:
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And the kinetic energy for free vibration is: 

	 ...(11)

	 The Lagrangian energy functional (Π) of 
the plate is defined as:

	 ...(12)

	 The displacement amplitude functions 
may be assumed in the form of a double series 
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of Chebyshev polynomials multiplied by boundary 
functions as follows:
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	 In which aij, bij and cij are the undetermined 
coefficients; i and j are integers; N1 and N2 are the 
highest degrees taken in the polynomial terms, and   
Ge (r*); (e=1, 2, 3) are functions depending upon the 
geometric boundary conditions to be enforced. It 
should be emphasized that in the Chebyshev–Ritz 
method, the displacement functions u, v and w 
should satisfy the geometric boundary conditions 
of the plate. The boundary function components in 
outer edge Ie (r

*) and inner edge He (r*); (e=1, 2, 3) of 
annular plate corresponding to different combinations 
of boundary conditions.

	 To obtain natural frequencies, the eigenvalue 
problem is formulated by minimizing the Lagrangian 
energy functional with respect to the arbitrary 
coefficients aij, bij and cij Thus we have:

	
...(14)

	 which in turn leads to the following 
eigenfrequency equation in matrix form as: 

	 (K - b2M)C=0	
...(15)
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M
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parameter. Parameter H is plate thickness. 

	 Solving the eigenvalue Eqs. (14)- (16) yield 
the frequency parameters β.

results and discussion

	 The properties of the carbon nanotubes and 
matrix which were used in this article are presented 
in Figs. 2 and Table 1. 

	 According to Fig. 2(a), a strong linear 
relationship between the nanotube diameter 
and wall thickness can be observed39. From the 
measurement of inside and outside diameter, the 
nanotube density per unit length can be calculated 
by assuming that the graphite layers of the tube 
shell have the density of fully dense graphite  
(ρg = 2.25 g/cm3). The nanotube density as a function 
of diameter is shown in Fig. 2(b), where the curved 
line is obtained directly from the straight line in 
Fig. 2(a). The morphology of a carbon nanotube is 
determined by the orientation and magnitude of the 
chiral vector in a graphene sheet, which is wrapped 
up to form the single-walled carbon nanotube 
(SWCNT). The two configurations are armchair 
and zigzag nanotubes. The Young’s modulus as 
function of nanotube diameter, obtained by using 
molecular structural mechanics (Li and Chou34), 
tight-binding molecular dynamics (Hernandez et 
al.35), and experimental data (Krishnan et al.37) 
are presented in Fig. 2(c). For molecular structural 
mechanics, the results are sensitive to nanotube 
diameter and nanotube structure at small diameter. 
The axial Young’s modulus approaches to 1.03 TPa 
for diameters 1.0 nm. 

	 Numerical solutions for the 3-D vibration 
analysis of nanocomposites annular plates for 
various geometry and boundary condition were 
computed. The vibration frequency β was expressed 
in terms of a non-dimensional frequency parameter 

( )2 1o M

M

a
EH

ω ρ νb +=
. In order to check the stability of 

the proposed approach as well as to validate the 
accuracy of that, some convergence tests and 
comparison studies were performed.

	 For the convergence study, the first four 
frequency parameters (e.g. nanocomposite annular 
plate) of completely free nanocomposites annular 
plate with inner-outer radius ratio ai/a o= 0.6 different 
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Table 2: 

H	 VNT	 N1×N2	 	      Mode sequence number	
			   1	 2	 3	 4

0.1	 0.5	 7×7	 2.4101	 6.7018	 6.8045	 7.8216
		  10×10	 2.4100	 6.7017	 6.8045	 7.8216
		  14×14	 2.4100	 6.7017	 6.8045	 7.8216
		  21×21	 2.4100	 6.7017	 6.8045	 7.8216
	 4	 7×7	 3.0467	 8.4727	 8.6018	 9.8878
		  10×10	 3.0466	 8.4726	 8.6018	 9.8878
		  14×14	 3.0466	 8.4726	 8.6018	 9.8878
		  21×21	 3.0466	 8.4726	 8.6018	 9.8878
0.4	 0.5	 7×7	 1.6944	 1.9580	 3.9905	 4.2921
		  10×10	 1.6944	 1.9580	 3.9905	 4.2921
		  14×14	 1.6944	 1.9580	 3.9905	 4.2921
		  21×21	 1.6944	 1.9580	 3.9905	 4.2921
	 4	 7×7	 2.1420	 2.4754	 5.0460	 5.4258
		  10×10	 2.1420	 2.4754	 5.0460	 5.4258
		  14×14	 2.1420	 2.4754	 5.0460	 5.4258
		  21×21	 2.1420	 2.4754	 5.0460	 5.4258

Fig. 2: Variation in: (a) nanotube wall thickness with nanotube diameter and (b) density with 
nanotube diameter39. (c) Diameter sensitivity of elastic modulus predicted by molecular 

structural mechanics (Li and Chou34), tight-binding molecular dynamics (Hernandez et al. 35) and 
experimental data (Krishnan et al.37)
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Table 3: 

H	 ai/a o	 Source of		  Mode sequence number
		  results	 1	 2	 3

An annular plate with both outer and inner edges free (F-F)
0.20	 0.3	 Ref a    	 2.2079	 3.7727	 5.3255
		  Authors	 2.2079	 3.7727	 5.3255
0.35	 0.1	 Ref b    	 2.2901	 3.7086	 4.8676
		  Authors	 2.2901	 3.7086	 4.8676
An annular plate with simply supported outer edge and free inner edge (S-F)
0.20	 0.3	 Ref a    	 2.1698	 5.3719	 6.0898
		  Authors	 2.1698	 5.3719	 6.0898
0.35	 0.1	 Ref b    	 2.1789	 3.3439	 5.3938
		  Authors	 2.1789	 3.3439	 5.3938
An annular plate with clamped outer edge and free inner edge (C-F)
0.20	 0.3	 Ref a    	 4.9934	 7.6593	 12.258
		  Authors	 4.9934	 7.6593	 12.258

aLiew and Yang15

bHosseini Hashemi et al17

Fig. 3: (a) Comparison of the experimental data and theoretical predicting models for the Young’s 
modulus of CNT/epoxy composites31. The first frequency parameter of the annular plate with free 
outer edge and clamped inner edge (F-C) versus CNT volume fraction (VNT) by using the different 

theory when H =0.3, ai/a o= 0.5, κo = 0.2, C = 2000 (b) MWNT κw = 0.6, ENT/M = 321.5, ρNT/M = 1.9. (c) 
SWNT κw = 0.6, ENT/M = 354.43, ρNT/M = 1.1  
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thickness-radius ratio H, κo = 0.2, κw = 0.4, ENT/M = 
321.5, C = 2000, α = -11.83, ρNT/M = 1 and MWCNT 
volume fraction VNT = 0.5% and 4% were performed, 
with results listed in Table 2. Four groups of series 
terms were taken into account, as shown in Table 
2, where N1 means the number of terms used in 
the radial direction and N2 means those used in the 
thickness direction for each displacement component. 
From the frequency parameters presented in Table 2, 
it can be observed that when the used terms were set 
to be N1= 10 and N1= 10 to five significant figures

	 The three-dimensional free vibrations of a 
thick annular plate with different boundary conditions, 
thickness ratio, and inner-outer radius ratio, VNT = 0 
and υm = 0.3 are presented in Table 3 together with 
the published values of  Liew and Yang [15] and 
Hosseini Hashemi et al.17. From Table 3, it is found 
that the present results were in close agreement 
with both Liew and Yang15 and Hosseini Hashemi  
et al.17.

	 Table 2 Convergence of  the f i rs t 
six frequency parameters of completely free 
nanocomposites annular plate when κo = 0.2,  
κw = 0.4, ENT/M = 321.5, C = 2000, α = -11.83, ai/a o= 
0.6, ρNT/M = 1 

	 Figure 3(a) shows comparison of the 
experimental data and theoretical prediction 
models for the Young’s modulus of MWCNT/

epoxy composites as a function of CNT content31. 
The previous micromechanical models (Micro-
Mechanical Mori-Tanaka, Halpin-Tsai method, and 
rule of mixtures) reported in the literature failed with 
the increase of the wt% of MWCNTs. Since the 
frequency parameter is completely depend on the 
Young’s modulus, the previous micromechanical 
models (Micro-Mechanical Mori-Tanaka, Halpin-Tsai 
method, and rule of mixtures) cannot calculate the 
frequency parameter correctly.

	 To validate the other well-known theories 
(rule of mixtures, Micro-Mechanical and Halpin 
Tsai) results with respect to the change of the CNT 
volume fraction (VNT),   the curves of the frequency 
parameter b versus VNT are shown in Figs. 3 (b) and 
(c) for the modified rule of mixtures and the three 
other theories for a thick annular plate ((ai/a o)’→0.5)  
with free outer edge and clamped inner edge (F-C) 
boundary conditions, thickness ratio H = 0.3, 0.2,ok =  
and C = 2000. As shown in Fig. 3, when CNT volume 
fraction (VNT) takes the values larger than 1%, as less 
the other theories give incorrect results. This is due 
to the fact that the variation of mechanical properties 
of CNT/polymer composites against CNT loading is 
nonlinear, whereas in these well-known theories the 
relationship between mechanical properties of CNT/
polymer composites and CNT loading is assumed to 
be almost linear. This assumption is acceptable within 
the low wt% of CNTs (e.g. in ref.31 wt% ≤ 1.5%).

	 The effect of CNT type, structures, diameter, 
shape factor and density on the vibration behavior 
of the annular plates are shown in Figs. 4-7, in 
which the variation of the frequency parameters 
plotted against the CNT volume fraction (VNT) where  
((ai/a o)’→0.5)  and 0.3H = .

	 The first frequency parameter of the 
completely free annular plate versus CNT volume 
fraction (VNT) for the zigzag and armchair structures 
of both MWNTs and SWNTs is shown in Fig. 4. 
It can be seen that CNT structural form (zigzag 
or armchair) of SWNT has a stronger effect on 
frequency parameter than MWNTs.

	 Figure 5 depicts the effect of CNT diameter 
on the first frequency parameter of the completely 
free annular plate. In Fig. 5(a) the MWNT diameter 
value was varied from 10 nm to 50 nm, while for 

Fig. 4: The first frequency parameter of the 
completely free annular plate versus CNT 

volume fraction (VNT) for the different type of 
CNT and H =0.3, ai/a o= 0.5, κo = 0.2, κw = 0.4, C 

= 2000.
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Fig. 5: The first frequency parameter of the completely free composite plate versus CNT volume 
fraction (VNT) for the different value of CNT diameter when H =0.3, κo = 0.2, C = 2000, ai/a o= 0.5. (a) 

MWNT κw = 0.4, ENT/M = 321.5, α = -11.83 (b) SWNT κw = 0.6, ENT/M = 354.43, α = -7.6331

Fig. 6: The first frequency parameter of the completely free annular plate versus CNT volume 
fraction (VNT) for the different value of CNT shape factor when. H =0.3, κo = 0.2, κw = 0.6, ai/a o= 0.5. 

(a) MWNT ENT/M = 321.5, (b) SWNT ENT/M = 354.4331

Fig. 5(b) the SWNT diameter value was varied from 
0.8nm to 1.1nm. As can be clearly seen, increasing 
of either MWNT and SWNT values had a decreasing 
effect on the first frequency parameter, but, in 
comparison, the MWNT had a stronger influence 
on the frequency changes that for the SWNT which 
were nearly increasing diameters of independent of 
diameter changes

	 The influence of the CNT shape factor 
parameter (c) on the first frequency parameters of 
the completely free annular plate for the different 

values of c from 200 to 20,000 is shown in Fig. 6. An 
increase in parameter c had resulted in an increase 
of the frequency parameter, especially in the middle 
of the domain where VNT was 5% for both the MWNT 
and SWNT cases.

	 Figures 7 a and b show the first frequency 
parameter of the completely free annular plate 
versus CNT volume fraction (VNT) for ρNT/M changes 
from 0.25 to 2 for the two cases, MWNT and SWNT, 
respectively. As they show, an increse in parameter 
ρNT/M  had a decreasing effect on the frequency 
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parameter for both MWNT and SWNT cases, but 
the MWNT samples were more affected by ρNT/M 
changes, increasing up to 20, than SWNT where 
it grew up to 16 for a maximum of ρNT/M equaled to 
2, especially at the middle of the figures where VNT  
equals 5% for both MWNT and SWNT cases.

Conclusions

	 Based on the 3-D elasticity theory, a 
comprehensive study of the three-dimensional 
vibration analysis of carbon nanotube (CNT) 
reinforced composites annular plates with different 
combinations of free, simply-supported, and clamped 
boundary conditions at the inner and outer edges 
was investigated. The Chebyshev–Ritz method 
was applied to derive the eigenvalue. Due to the 
cylindrical nature of the annular plate geometry, 
the formulation was carried out in cylindrical polar 
coordinates.

	 In order to obtain precise results, a new form 
of the rule of mixtures, including an exponential shape 
function, length efficiency parameter kl, orientation 
efficiency factor ko, and waviness parameter kw was 
applied to have a proper prediction of the mechanical 
properties of CNT reinforced composites31.   

	 The validity and the range of applicability of 
the results was obtained based on other well-known 
theories (e.g., Halpin-Tsai, etc.) were studied by 
comparing results obtained using them with those 
obtained by our modified rule of mixtures. Moreover, 
the influence of the CNT type, structures, diameter, 
shape factor, density and volume fraction on the 
frequency parameter of the plate was also studied.  
Finally, we suggest the results presented in this paper 
can serve as benchmark results for researchers 
to validate their numerical methods and also for 
engineers to use such plates in their structures in 
the future.  

Fig. 7: The first frequency parameters of the annular plate with free outer edge and clamped inner 
edge (F-C) versus CNT volume fraction (VNT) for the different value of   when H =0.3, κo = 0.2, κw = 

0.6, ai/a o= 0.5. (a) MWNT ENT/M = 321.5, (b) SWNT ENT/M = 354.43
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