

ORIENTAL JOURNAL OF CHEMISTRY

An International Open Free Access, Peer Reviewed Research Journal

www.orientjchem.org

ISSN: 0970-020 X CODEN: OJCHEG 2016, Vol. 32, No. (2): Pg. 903-919

New Cerium (III) Complex of Schiff Base (E)-N-Benzylidene-4-Methoxyaniline: Synthesis and Density Functional Theoretical Study of Vibrational Spectra

IMANE LAKEHAL^{1*}, FARHI HALAIMIA¹, SAOUSSEN LAKEHAL², ABBAS BOUKHARI³ and ABDELHAFID DJEROUROU

 ¹Organic Synthesis and Biocatalysis Laboratory, Faculty of Science, Chemistry Department, P.B.: 12, 23000, Annaba, Algeria.
 ²Applied Organic Chemistry Laboratory, Faculty of Science, Chemistry Department, P.B.: 12, 23000, Annaba, Algeria.
 ³Organic Synthesis Modeling and Optimization of Chemical Processes Laboratory, Faculty of Science, Chemistry Department, P.B.: 12, 23000, Annaba, Algeria.
 *Corresponding author E-mail: lakehal.imane.12@gmail.com

http://dx.doi.org/10.13005/ojc/320216

(Received: February 03, 2016; Accepted: March 06, 2016)

ABSTRACT

Complex of cerium (III) with (E)-N-benzylidene-4-methoxyaniline is synthesized through a one-pot three-component reaction from aromatic aldehyde, aromatic amine and the CeCl₃ \cdot 7 H₂O, as an efficient catalyst. This cerium (III) complex is characterized by IR, 1H, and 13C NMR-spectroscopy and mass-spectral data. Molecular structure, Mullikan charges, thermodynamic parameters; vibrational frequencies and intensities were calculated by Density Functional theory methods (B3LYP, B3PW91, mPW1PW91 and PBEPBE) using the SDD basis set. The comparison between the calculated and experimental data in order to attain the best quality and to predict the structure, the best performance in the vibration spectra perfected of the title compound, we have found that the harmonic vibration computed are in a good agreement with the observed in IR spectrum, for closest match we calculated optimal scaling factors can recommend for the IR spectral future predictions for unknown compounds of this class. In order to better comparison, we also root mean square values of the experimental and calculated IR bands are 16.64, 16.64, 17.45, 17.66 and the mean absolute percentage error values are 1.33, 1.39, 1.40, and 1.5 for B3LYP, B3PW91, mPW1PW91, and PBEPBE methods respectively.

Keywords: imine complexed, CeCl3, DFT, vibrational frequencies.

INTRODUCTION

Schiff bases^{1–7} and their metal complexes represent one of the most areas of material science,

catalysis and chemical research^{8–21}. The efficiency of these compounds often enhanced upon coordination to a metal has been proven for the drug action acceleration of therapeutic agents^{22–26} and for

multi-compounds reaction where these complexes are used as intermediates. Recently, extensive research has surrounded the synthesis of lanthanide complexes and precisely the cerium (III) complexes using cerium (III) heptahydrate (CeCl₃ \cdot 7 H₂O)²⁷.

This compounds are prepared by a reaction of a primary amine with an aldehyde and $CeCl_3 \cdot 7$ H_2O as a catalyst (Figure 1). In this present work a cerium (III) complex of new Schiff base (E)-Nbenzylidene-4- methoxyaniline noted (P2-CeCl₃) has been synthesized and characterized by elemental analysis, IR, NMR and Mass spectral data²⁸⁻³².

To our best knowledge no structural data and detailed interpretation of the vibrational spectra of the title compound are mentioned in the literature, this prompted us to look into the vibrational spectroscopy of this molecule more carefully. Therefore, this theoretical study aimed to determine molecular and chemical properties of (P2-CeCl₂).

An comprehensive theoretical study carried out for predict the optimized geometric parameters, the Mullikan charges, thermodynamic parameters and vibrational frequencies, involving the cerium (III). The Stuttgrat Dresden (SDD) effective core potential^{33,34} basis set was used with four DFT methods including B3LYP, B3PW91, mPW1PW91 and PBEPBE methods. For a comparative performance of these four different DFT methods, commit to the detailed theoretical and experimental investigation of the vibrational spectra of this molecule³⁵.

So, a detailed interpretation of the vibrational spectra of the title compound has been made, in continuation of our theoretical studies, in the present work, we checked the relative performance of B3LYP, B3PW91, mPW1PW91 and PBEPBE methods at the SDD level taking the title compound as a test compound.

EXPERIMENTAL

In this work, we have found $CeCl_3 \bullet 7 H_2O$ as an efficient catalyst for the synthesis of the imine complexed with $CeCl_3$ noted (P2-CeCl_3) at room temperature through a one-pot reaction of aromatic aldehydes, and aromatic amines in methanol. It is also noteworthy to mention that our environmentally benign reaction does not generate any toxic waste products. A possible mechanism for the formation of the complex proposed by Mazaahir Kidwai et al²¹ is shown in Figure 1.

Instrumental Analysis

All reagents used for the synthesis of the compound are commercially available and were used without further purification. IR spectra were recorded on a Shimadzu FTIR-8400 S spectrophotometer as KBr pellets in the frequency range 4000-400 cm⁻¹. 1H NMR and 13C NMR spectra were recorded on Nuclear magnetic resonance spectrometer type "AVANCE 300MHz de BRUKER " . Mass spectra (MS) were obtained by using electrospray ionization (ESI) technique.

Preparation of P2-CeCl₃

Benzaldehyde (1 mmol) and paramethoxyaniline (1mmol) in MeOH (5 mL), were mixed and stirred at room temperature. To this, CeCl3 \cdot 7 H₂O (cerium chloride heptahydrate) (3 mol%) was added. The progress of reaction mixture was monitored by TLC (using petroleum ether/AcOEt = 80:20 as an eluent). After completion of the reaction, the reaction mixture was evaporated under reduced pressure to give the powder product. The predicted structure of the product is shown in Figure 2, it was unambiguously established on the basis of their spectral analysis (IR, 1H, 13C NMR and MS mass spectral data).

Characterization

 $\begin{array}{l} P2-CeCl_{3}:(E)-N-benzylidene-4-\\ methoxyaniline CeCl_{3}, C14H13 NO-CeCl_{3}: Yield: 96\\ \%, RMN ^{1}H (CDCl_{3}) \ \delta ppm: 8.47 (s, 1H, =CH); 7.90\\ ``7.23 (m, 5H, -C2H5); 6.95"6.59 (m, 5H, O-C2H5));\\ 3.82 (s, 3H, CH3). RMN^{13}C (CDCl3) \ appm: 158.42\\ (O-CH); 131.05 (=CH-C-CCH); 128.75 (=CH-C-CH);\\ 122.22(O-C-C-CH); 114.77 (O-C-CH); 55.50 (CH3).\\ SM: [M+] (m/z) = 457.73, found: 459.47.\\ \end{array}$

Computational details

In addition to the experimental study, we have used molecular orbital calculations to locate the most stable candidate structure, evaluate the accuracy of the geometries, provide the initial molecule model for structure solutions and investigate spectral properties of the studied complex. The DFT calculation of this com- pound (P2CeCl3) were performed using GAUSSVIEW 5.08 molecular visualization program and the Gaussian 09 program package³³. For calculations, involving the cerium (III), the Stuttgrat Dresden(SDD) effective core potential³⁴ basis set was used with the B3LYP, B3PW91, mPW1PW91 and PBEPBE methods, the vibrational frequencies were also calculated with these methods.

In the fitting processes performed to correct over estimations at the calculated harmonic frequencies, the values computed at these levels contain known systematic errors and therefore, scaling factors 0.9534, 0.9477, 0.9429 and 0.9795 for B3LYP, B3PW91, mPW1PW9,PBEPBE, respectively³⁴. We have also calculated optimal scaling factors for all investigated methods. After this procedure, no imaginary mode was observed.

RESULTS AND DISCUSSION

The prediction of vibrational wave numbers was done at DFT (B3LYP, B3PW91, mPW1PW91, PBEPBE) levels with SDD basis set, as it has been well recognized as an efficient theoretical chemistry tool for studying vibrational properties of variety of molecule, positive wave numbers for each normal mode confirm the stability of the molecular structure obtained with minimum energy. As already

Fig. 1: Proposed mechanism of imines synthesis using $\text{CeCl}_3 \cdot 7 \text{ H}_2\text{O}$

known, the wave numbers calculated are almost systematically over estimated compared to the experimentally measured values, these differences are widely corrected by scaling the calculated values with factors corresponding to the methods used. The complex study has 33 atoms, which possess 93 normal mode of vibration where the Gaussview 5.08 package has been considered to get visual animation and also for verification of these normal assignment vibrational modes (IR). The predicted infrared spectra of our com- pound are shown in Figure 3, a comparison between the calculated and the experimental data help us to understand the observed spectral frequencies, which are collected in two Tables 1 and 2. According with results in this Tables, experimental fundamentals are in better agreement with the scaled fundamentals and are found to have a good correlation for the four methods used, we also calculated the mean absolute deviation, root mean square, TS (tacking signal) and the mean absolute percentage error between the calculated and experimental data. Careful examining and comparison of the experimental and calculated values may conclude the following observations for each vibration mode:

Imine group vibrations

The first type of vibration is the C=N stretching skeletal bands are observed in the range of 1650-1500cm⁻¹ ³⁵⁻³⁸ for the title compound, the strong ab- sorption at 1505 cm⁻¹ due to vC=N frequencies. The calculated stretching vibration mode of the C=N (imine) group band of the complex with the four methods (see Figure 3 and Table 1 entry 18 for v(C=N) at the SDD basis set are 1507, 1519, 1526 and 1531 cm⁻¹ (scaled), respectively. The second , the deformation C-H (see Table 1 entry 27) of the imine function , a band at 1363 cm⁻¹, correspond to δ C-H,(C=N), it is predicted at 1377, 1371, 1372 and 1385 cm⁻¹, respectively³⁹.

Fig. 2: Predicted structure of P2-CeCl,

Methoxy group

32 fundamentals vibrations can be associated to this group. Five stretching, seven deformation, one scis- soring, four umbrella, six rocking and nine torsional vibration modes are motion to the methyl group. The strongest band of CH3 asymmetric and symmetric stretching frequencies are established at 3026 (3037, 3035, 3038, 3055 cm⁻¹), and 2879 (2884, 2879, 2882, 2895 cm⁻¹) in infrared (the SDD calculations using the four methods) spectrum (see Figure 3 and entries 9 and 14 in Table 1). The band observed at 1442 cm⁻¹ in the IR and 1442, 1445, 1450 and 1441 cm⁻¹ (SDD calculation using the four methods) are assigned as the de- formation mode of CH_a (íCH3 entry 20 in Table 1), the scissoring vibration of this group appear at 1405 cm⁻¹ (entry 24 in Table 1) and confirmed by the calculated frequencies in the same rang 1407, 1404, 1407 and 1409 cm⁻¹ and 1391 cm⁻¹ is attributed to the CH₂ umbrella vibration (entry 25 in Table 1), the latter mode is well defined with the SDD calculation, give assignment similar to the experimental value. For the rocking vibrations, many bands observed but the clearest that can identify this vibration mode appears at 1028 cm⁻¹ in IR spectrum (entry 44 in Table 1), with values not close enough with SDD calculation at 984, 976, 980, and 980 cm⁻¹. In the vibration spectrum of this compound four bands observed which could be assigned to the following modes with different internals coordinates: 1266 and 1207 cm⁻¹ for vC-O vibrations, δ O-C at 552 cm⁻¹ and torsion vibration at 444 and 410 cm⁻¹, observed in the same range with the calculated vibration.

Aromatic rings

The characteristic vC-H stretching vibrations of the aromatic ring are expected to appear in 3000- 3100 cm^{-1}

Frequency range^{40,41}. Although nine vibrational bands are predicted in this rang, the vC-H stretching vibration of the title compound is assigned to two strong bands. The first corresponds to the ring para-substituted and the second for the benzene ring at 3093 and 3067 cm⁻¹, in IR, respectively (entry 1 and 2 in Table 1).

For the phenyl ring (ring2), the bands observed at 1207 cm⁻¹ in IR spectrum is assigned as C-H deformation. Also SDD calculation give these mode at 1197, 1199, 1202 and 1211 cm⁻¹, respectively, using the four methods (entry 33 Table 1). They are in agreement with the experimental band. On the other hand, the δ C-H of the para substituted (ring2) are seen in the rang³⁵ 995-1315 cm^{-142,43} band observed at 1266 cm⁻¹ observed in the IR spectrum attributed to δ C-H of ring2, for this mode the frequencies calculated are 1266, 1261, 1263, and 1265 cm⁻¹, respectively, with the four methods (entry 31 Table 1). In general, the C=C stretching vibration in aromatic compound are seen in the region of 1650-1430 cm^{-132,44-46}. A characteristic band appear at 1437 cm⁻¹ confirmed by the SDD calculation (1436, 1435, 1439 and 1435 cm⁻¹) attributed to vC-C frequency (entry 21 Table 1). For the modes of deformation in the plan of vC-C-C are observed at 820, 812,778, and 536 cm⁻¹, confirmed by the calculated assignments.

Ce-N and Ce-Cl vibrations modes

There is not far experimental data for this type of complexes, the complexes with Ce(III) ligand bonding is strongly ionic with small donor-acceptor character and supposes weak and not informative bands⁴⁷, The Ce-N stretching vibrations are often coupled with other vibrational modes of the ring. For this purpose, the SDD calculation with the four methods offer explicit information and details about these modes vibrations, or you notice the appearance of this mode below 400 cm⁻¹; the vCe-Cl is closest vibration, it appear at (356, 339, 343, and 336 cm⁻¹) (entries 72, 74 and 75 Table 1), whereas the vCe-N stretching and δ Ce-Cl bending vibration appear in the same band at (145, 148, 150 and 142 cm⁻¹).

Obviously, B3LYP functional give results in closest agreement with the experimental frequency over the other functional and for performance appraisal of the used methods, the Mean Absolute Deviation (MAD), Mean Absolute Percentage Error (MAPE) and Mean Square Values (RMS) were calculated and given in Table2. RMS values of the experimental and calculated IR bands are 16.64, 16.64, 17.45, 17.66 and MAPE values are 1.33, 1.39, 1.40, and 1.5 for B3LYP, B3PW91, mPW1PW91, PBEPBE methods respectively.

These results indicate a good agreement between theoretical and experimental data of the

Fig. 3: The theorethical frequencies (scaled); calculated with B3LYP, B3PW91, mPW1PW91, PBEPBE methods using SDD basis set

				ВЗЦУРА	SDD		B3P	W91/SD			MPW1P	PW91/S	00		PBI	EPBE/SI			
ž	Exp. IR	별	unsc- aled	sca- led	sca- led	E E	unsc- aled	sca- led	sca- led	프 관	unsc- aled	sca- led	sca- led	표 표	unsc- aled	sca- led	sc- aled	별	Assignements (b)
–	3093	17,73	3263	3111	3080	1,64	3273	3102	3071	3,53	3293	3105	3074	3,69	3184	3119	3088	0,76	vC-H, sym, Ring 2
2	3067	16,40	3252	3101	3070	1,24	3268	3097	3066	0,90	3288	3100	3069	1,24	3181	3116	3085	4,83	vC-H, sym, Ring 1
ო			3250	3099	3068	1,65	3264	3093	3062	7,52	3284	3097	3066	5,99	3181	3116	3084	1,64	vC-H, asym, Ring 1
4			3248	3096	3065	9,61	3263	3093	3062	1,94	3284	3096	3065	1,49	3173	3108	3077	6,11	vC-H, asym, Ring 2
5			3234	3083	3053	3,99	3251	3081	3050	3,32	3272	3085	3054	2,56	3161	3096	3066	2,21	vC-H, asym, Ring 2
9			3221	3071	3040	0,00	3238	3069	3038	7,16	3260	3073	3043	0,00	3158	3093	3062	0,63	vC-H, asym, Ring 2
œ			3220	3070	3039	9,59	3238	3069	3038	2,07	3259	3073	3042	8,48	3157	3092	3061	7,17	íC-H, asym, CH3
6	3026	13,87	3218	3068	3037	0,58	3235	3066	3035	0,25	3255	3069	3038	0,16	3150	3086	3055	0,04	vC-H, asym, Ring 1
10	3013	13,72	3215	3065	3034	0,90	3230	3061	3030	1,00	3249	3064	3033	1,03	3136	3072	3041	0,81	;+vC-H, asym, CH ₃ vCH, asym, Ring 1
																			;+vC-H, asym, CH ₃
1			3205	3055	3025	1,23	3222	3054	3023	1,27	3243	3058	3027	1,12	3136	3072	3041	1,39	vC-H, asym,
																			Ring 2; +vCH(C=N)
12			3166	3019	2989	2,13	3180	3014	2984	2,48	3200	3017	2987	2,42	3098	3034	3004	1,59	vC-H (C=N)
13	2990	13,98	3154	3007	2977	24,61	3171	3005	2975	23,67	3190	3008	2978	23,03	3091	3028	2997	18,97	vC-H, asym, CH ₃
14	2879	10,02	3055	2913	2884	37,77	3068	2908	2879	38,59	3087	2911	2882	36,70	2985	2924	2895	31,88	vC-H, sym, CH ₃
15	1577	7,52	1647	1570	1554	1,47	1663	1576	1560	2,73	1678	1582	1567	10,33	1609	1576	1560	29,64	vC-C, Ring2;
																			+vC=N
16			1637	1561	1546	365,30	1654	1568	1552	23,67	1668	1573	1557	352,80	1604	1571	1555	219,55	vC-C, Ring 1; +
																			8C-H,CH3
17			1613	1538	1522	215,19	1630	1545	1530	349,56	1646	1552	1536	537,25	1572	1540	1524	233,81	vC-C, Ring 2
																			;+ v(C=N)
18	1505	1,12	1597	1522	1507	1093,03	1619	1535	1519	452,10	1635	1542	1526	900,60	1563	1531	1516	685,14	vC-C, Ring 2; + vC=N
19			1576	1502	1487	28,09	1593	1509	1494	924,91	1609	1517	1502	22,32	1534	1503	1488	41,01	vC-C, Ring1;
																			vC-H,CH ₃
20	1442	16,72	1528	1457	1442	105,67	1540	1459	1445	26,05	1553	1465	1450	123,85	1486	1456	1441	99,29	vC-C, Ring 1; +vC-
																			C, Ring2; +vC=N+

LAKEHALA et al., Orient. J. Chem., Vol. 32(2), 903-919 (2016)

908

	;+vC-C,	+ Z		efor,	+8CH,		+						+		+		<u>+</u>			aî.			+	<u>.</u>			<u>+</u>	- vOC,				<u>+</u>	ocking,
vCH,CH ₃	vC-C, Ring 1	Ring2; +vC=	vC-H,CH ₃	vC-H,CH ₃ ,d	vCC, Ring1;	CH ₃ ,sciss,	vC-C, Ring2	δC-H,CH ₃ ,	umbrella,	SCH,CH ₃ ,	umbrella	vC-C, Ring 1	vC-C, Ring2	δC-H,(C=N)	vC-C, Ring1	SCCH, Ring1	SC-C, Ring2	SCCH, Ring2	vC-C, Ring1	+vCC, Ring2	SCCH, Ring1	,+vC=0	vC-C, Ring1	SCCH, Ring1	δC-H,CH ₃ ,	umbrella,	vCCH,Ring2	vCH,(C=N),⊣	vCCH,Ring2	vCCH,Ring2	vCCH,Ring1	vCCH,Ring2	vC-H,CH ₃ , ro
	11,73			22,70	21,70		65,47			24,51		58,58	15,31		2,51		29,39		16,73		1,55		275,25				54,49		37,33	45,71	14,09	5,67	
	1435			1422	1414		1409			1402		1390	1385		1346		1310		1291		1265		1230				1211		1164	1149	1146	1122	
	1449			1436	1428		1424			1416		1404	1399		1360		1324		1304		1278		1243				1223		1176	1161	1157	1133	
	1480			1466	1458		1453			1446		1434	1428		1388		1351		1331		1305		1269				1249		1201	1185	1182	1157	
	7,35			22,39	59,31		53,98			40,29		12,07	20,16		15,24		31,95		21,98		1,56		372,20				67,97		56,58	1,05	66,18	7,54	
	1439			1434	1423		1407			1397		1391	1372		1332		1299		1290		1263		1241				1202		1163	1150	1145	1126	
	1453			1449	1437		1421			1411		1405	1385		1345		1312		1303		1276		1254				1214		1175	1161	1157	1138	
	1541			1537	1524		1507			1496		1491	1469		1427		1391		1382		1353		1330				1287		1246	1232	1227	1207	
	113,45			7,77	21,98		57,54			55,49		41,83	15,96		21,67		12,71		33,69		19,84		1,07				370,10		62,46	55,17	1,12	72,03	
	1435			1432	1420		1404			1394		1390	1371		1331		1297		1289		1261		1235				1199		1162	1149	1144	1124	
	1450			1446	1434		1418			1408		1404	1385		1344		1310		1302		1274		1248				1211		1174	1161	1155	1135	
	1530			1526	1514		1497			1486		1481	1461		1418		1382		1373		1344		1317				1278		1239	1225	1219	1198	
	6,00			20,97	60,91		79,74			58,24		13,30	30,03		12,27		19,19		47,86		0,97		377,50				56,15		58,45	1,34	100,60	8,54	
	1436			1432	1422		1407			1398		1387	1377		1321		1291		1288		1266		1227				1197		1164	1152	1146	1124	
	1451			1447	1436		1422			1413		1401	1391		1335		1304		1301		1279		1240				1209		1175	1163	1157	1136	
	1521			1517	1506		1491			1482		1469	1459		1400		1368		1364		1341		1300				1268		1233	1220	1214	1191	
	19,64						23,41			29,77			27,92		38,29						28,90		23,62				34,78						
	1437						1405			1391			1363		1356						1266		1222				1207						
	21			22	23		24			25		26	27		28		29		30		31		32				33		34	35	36	37	

LAKEHALA et al., Orient. J. Chem., Vol. 32(2), 903-919 (2016)

909

vCCH,Ring1;+	vC-H,CH ₃ , rocking	vC-C, Ring1;	vCCH,Ring1;+	vC-H,CH ₃ ,	umbrella,	vCC, Ring2;	+vCCH,Ring2;	vCCH,Ring2,	vCH,Ring2,	vCCH,Ring2;+	vC-H,CH ₃ ,	rocking,	vCCH,Ring2,	vCCH,Ring1,	vCCH,Ring1,	vCCC,Ring1;	vCCH,Ring1,	vCCH,Ring1;	+ vC=N,	vCCH,Ring1;	+ vCH,CH ₃ ,	rocking,	vCCH,Ring2;+v	C-H,CH ₃ ,rocking,	vCCH,Ring1,	vCCH,Ring2,	vCCH,Ring2;	+vC=N,	vC-C, Ring1;	+vCCH,Ring1,	vC-C, Ring2;	+vCCH,Ring2, vCCH,Ring2,
53,27	13,17	0,22				16,95		8,68	0,06	9,45			1,47	4,25	5,23	1,47		41,70		14,52			2,61		29,85	1,27	37,81		7,69		2,71	49,25
1109	1082	1075				1065		966	989	980			968	967	954	953		936		927			914		839	819	810		792		764	749
1121	1093	1086				1075		1007	666	066			977	976	964	963		945		936			924		847	827	818		800		772	757
1144	1115	1109				1098		1028	1020	1011			968	667	984	983		965		956			943		865	845	835		817		788	772
68,74	0,19	11,62				18,01		0,11	1,68	4,40			0,84	4,92	11,79	52,07		1,0826		3,03			0,56		66,53	0,91	11,31		7,30		2,64	42,19
1107	1089	1081				1064		1000	066	980			970	961	957	956		955		940			925		845	828	816		807		766	759
1118	1100	1092				1075		1010	1000	989			980	971	966	965		964		950			935		853	836	824		815		773	766
1186	1166	1158				1140		1071	1060	1049			1040	1030	1025	1024		1023		1007			991		905	887	874		865		820	813
8,10	68,69	0,16				11,77		0,09	1,57	4,68			1,17	1,07	10,47	3,41		56,48		3,30			0,66		60,14	0,96	10,70		9,70		2,48	42,80
1103	1085	1080				1062		667	988	976			967	959	955	953		947		935			922		841	825	814		803		763	757
1115	1096	1090				1072		1007	697	986			977	696	964	963		957		944			932		850	833	822		811		771	764
1176	1156	1151				1132		1062	1053	1040			1031	1022	1018	1016		1010		966			983		897	879	867		856		813	807
74,03	0,18	12,01				23,81		0,07	1,84	5,33			0,89	0,89	0,64	12,97		0,45		66,22			1,05		61,11	1,15	8,02		9,74		33,71	13,85
1098	1084	1082				1061		1005	986	984			974	963	959	956		941		935			929		843	829	816		806		761	760
1109	1095	1093				1071		1016	966	994			984	973	696	996		951		945			938		852	837	824		815		769	768
1164	1149	1147				1124		1065	1045	1043			1032	1020	1016	1013		697		991			984		894	878	864		854		807	805
		32,99				52,86				4,89				42,49				52,92		57,62					1,54		14,88		28,42		55,32	50,60
		1073				1052				1028				960				919		901					836		820		812		778	767
38	39	40				41		42	43	44			45	46	47	48		49		50			51		52	53	54		55		56	57

LAKEHALA et al., Orient. J. Chem., Vol. 32(2), 903-919 (2016)

vC-H,CH ₃ ; +	vCCH,Ring1; +	vCCH,Ring1,	vCCH,Ring1;	vCCH,Ring2,	vCCH,Ring2,	vC-H3 , rocking;	+ vCCH, Ring1,	vHCN; + vCCH,	Ring1,	vCOC; +	vCCH,Ring2,	v,C-H,CH ₃ ; +	vCH,Ring1;	+vCH,Ring2,	vCC.Rina2.	vCH,Ring1;+	vCH,Ring2,	vCC, Ring2,	vC-C,Ring1;+	vC-H,Ring1,	vC-C.Rina1:+	VC-H Ring1.1	VC-C, HINGZ;+	vC-H,Ring2,	vOC;+ vC-H,	Ring2,	vOC;+ vC-H,	Ring2,	v,C-H,CH ₃ ;+	vC-H,Ring1;+	vC-H,Ring2,	vC-H,Ring2,	v,asym, Ce-Cl,	v,CH,CH ₃ ; +
23,45			10,11		48,93	15,01		4,89		0,17		17,48				13,86			23,54		18.81				3,94		0,64		1,48			0,33	77,14	26,01
724			677		661	655		608		589		542				523			488		479				421		397		395			381	336	327
731			684		667	662		614		595		547				528			493		484	2			425		401		399			385	340	331
747			698		681	676		627		608		559				539			503		494				434		409		408			393	347	338
33,00			15,91		51,27	21,93		8,69		0,15		22,18				20,79			35,37		18,98				1,25		0,19		06'0			0,55	111,23	29,67
726			673		665	656		612		589		542				526			493		485				431		402		396			385	343	340
733			680		672	662		618		595		548				531			498		490	0			436		406		400			389	346	344
778			721		713	703		656		631		581				563			529		519)			462		431		424			412	367	365
32,12			13,62		49,81	19,57		8,09		0,17		21,21				19,50			31,57		20.48				1,89		0,22		0,84			0,56	104,56	26,48
723			670		663	654		611		588		541				524			491		484	2			430		400		395			384	339	337
730			677		670	660		617		594		547				530			496		489				434		404		399			388	342	341
770			715		707	697		651		627		577				559			523		516)			458		426		421			409	361	359
34,20			13,59		47,08	18,09		7,31		0,21		20,70				18,27			28,56		22.73	Ì			2,86		0,32		0,66			0,55	99,20	22,82
723			673		666	652		614		593		544				526			492		485				433		401		396			386	336	333
730			679		673	659		620		599		550				531			497		490	0			437		405		400			390	340	337
766			713		705	691		650		628		576				557			521		514				458		425		420			409	356	353
29,51						33,13		48,62		18,58						24,14					51.04))			57,46		57,19							
715						668		633		552						536					484)			444		410							
58			59		60	61		62		63		64				65			99		67	5			68		69		70			71	72	73

330 99,88 354 309 90,95 333 285 4,01 301 229 11,56 244 204 5,87 215 155 1,07 169 148 15,51 158 148 15,51 158 148 15,51 158 148 15,51 163 127 0,93 134 100 5,92 107 100 5,92 107 394,17271 23,0012 5,824756 1,63779 -36,000 -24,361 1,0000 0,9534	333 333 333 333 333 333 333 333 333 33
--	--

912

title compound at SDD basis set using B3LYP, B3PW91, mPW1PW91, PBEPBE functional and specially, B3LYP, which have the best agreement with the smallest difference between calculated and experimental frequencies.

Finally, we proposed and calculated the optimal scaling factors, which are recommended to get a very close frequencies. The obtained scaling factors are 0.9439, 0.9382, 0.9335 and 0.9697 for B3LYP, B3PW91, mPW1PW91, PBEPBE, respectively at the SDD basis set.

Molecular geometry

The molecular structure of the compound in the ground state (in vacuo) was optimized using density functional theory, The optimized geometrical parameters: bond length in Å, bond angles and dihedral angles in degree, determined with mPW1PW91, B3LYP, B3PW91 and PBEPBE methods at SDD basis set for molecule are collected in Table 2 in accordance with the atom numbering shown in Fig. 4. The values of the distances be- tween the atoms and valence or torsion angles are very close in any calculation method.

Mulliken Atomic Charges

Mulliken atomic charge calculation in Table 3 has an important role in the application of quantum chemical calculation to molecular system because of atomic charges present a vital insight in the

Fig. 4: The optimized structure of P2dCeCl3

understanding of several kinds of chemical reactions and they are crucial to the elucidations of a number of other phenomena, effect dipole moment, molecular polarizability, electronic structure and more a lot of properties of molecular systems. In addition to the charge distribution on the molecule has an important influence on the vibrational spectra, they also are important factors in molecular structure-activity and structure-property relations^{46,48}. The total atomic charges of the imine complexed with CeCl3 obtained by the Mulliken Population Analysis (MPA), they were calculated using B3LYP, B3PW91, PBEPBE and mPW1PW91 levels with SDD basis set, were listed in Table 3.

Our interest here is the comparison of the performance and assess the sensitivity of the calculated charges using different methods in order to describe electronic distribution in our complex and the influence of the presence of CeCl3, by comparing the MPA charges in the imine(P2) with imine complexed (P2-CeCl3).

In P2 and P2-CeCl3 compounds, more charge density was found at C14 linked to imine function (C=N) than that the other carbon atoms. The high positive charges at C6 is due to effect of oxygen atom (O26) of the methoxy group attached in the para position of ring 1 with C6. The charge distribution of the title compound shows that the carbon atoms attached with hydrogen atoms (C1, C2, C4, C5, C12, C15,C16,C17, C19, C21) are negative whereas the remaining carbon atoms are positively charged. The oxygen and nitrogen atoms have more negative charges whereas all hydrogen atoms have a positive charge. It is very clear from Table 3 that there is large change in Mulliken charges of the nitrogen atom (N11) in P2 and P2-CeCl3, and this variation reveals that there is charge transfer through the N-Ce bond, explained by the appearance of a strongly negative charge noted for the nitrogen atom, which is involved, as acceptor and the bigger positive charge is noticed on the cerium atom, as donor. This donor effect is due to the presence of electronegative nitrogen atoms; while the CI atoms have a the highest negative charges in P2-CeCl3. All used methods have shown similar charges for each compound (imine and complex), where a change in charges distribution have been observed, for which the complex have the highest charges.

spo
letho
3E m
BEPI
91 ,P
1PW
лРW
/91, r
33PV
Ϋ́,
1 B3L
t with
s set
basi
SDD
id at
unod
com
f the
les o
ang
edral
dih
s anc
ngle
nce a
valei
lths ,
lleng
pond
sted
selec
The
ole 2:
Tat

Bond Lengths (Å)	ВЗLYP	B3PW91	PBEPBE	mPW1 PW91	Bond Angle(°)	ВЗГҮР	B3PW91	PBEPBE	mPW1 PW91	Dihedral Angle(°)	ВЗГҮР	B3PW91	PBEPBE	mPW1 PW91
C30-H32	1,0896	1,0887	1,09844	1,08691	H31-C30-H33	110,78648	110,77713	110,8201	110,72894	H31-C30-O29-C6	60,8449	61,22227	60,75665	61,3265
C30-H31	1,09656	1,09586	1,10551	1,09418	H32-C30-H33	110,04528	109,93335	110,10183	109,89038	H32-C30-O29-C6	179,29788	179,62474	179,20783	179,74356
C30-H33	1,09666	1,09592	1,10555	1,09424	H31-C30-H32	34,86276	109,89515	110,0796	109,86046	H33-C30-O29-C6	-62,20407	-61,92698	-62,29689	-61,79802
C30-O29	1,47133	1,46394	1,48127	1,45961	H33-C30-O29	110,56695	110,63456	110,54325	110,66617	C30-O29-C6-C5	-179,33911	-179,60474	-179,0573	-179,57024
O29-C6	1,3657	1,36053	1,37366	1,35758	H32-C30-O29	104,72369	104,80848	104,62242	104,88703	C30-O29-C6-C1	0,54607	0,22304	0,60889	0,22809
C6-C1	1,41866	1,41533	1,42486	1,41266	H31-C30-O29	110,53905	110,63323	110,50747	110,65438	O29-C6-C5-H10	0,27482	0,25523	0,48273	0,07535
C6-C5	1,4232	1,41916	1,43089	1,41634	C30-O29-C6	120,70646	120,62681	119,59625	120,57187	O29-C6-C1-H7	0,15666	0,08157	0,95332	-0,10911
C1-H7	1,08421	1,08413	1,09338	1,08237	O29-C6-C1	124,81656	124,79784	125,07405	124,68192	O29-C6-C1-C2	179,84825	179,81059	-179,90609	179,995
C5-H10	1,08495	1,08455	1,09408	1,08278	O29-C6-C5	115,15562	115,16341	114,85106	115,247	O29-C6-C5-C4	179,80049	179,83594	179,61916	179,90731
C5-C4	1,39152	1,38903	1,39604	1,38786	C6-C1-H7	121,11615	121,13103	121,28791	121,11387	C6-C1-C2-H8	-178,15317	-178,15928	-176,53595	-178,63597
C4-H9	1,0868	1,08647	1,09538	1,08486	C6-C5-H10	118,33952	118,38003	118,23857	118,37959	C6-C1-C2-C3	0,01599	0,02839	-0,31298	-0,23528
C1-C2	1,40206	1,39869	1,40894	1,39598	C6-C5-C4	120,29224	120,31297	120,42609	120,30179	C6-C5-C4-H9	179,81883	179,63214	-179,00123	179,2906
C2-H8	1,08711	1,08692	1,0976	1,08524	C6-C1-C2	119,65487	119,68821	119,46311	119,68331	C6-C5-C4-C3	0,70153	0,70479	0,94606	0,46484
C4-C3	1,42596	1,4232	1,43385	1,4207	H10-C5-C4	121,36649	121,30564	121,32956	121,31841	H7-C1-C2-C3	179,71342	179,76271	178,84533	179,86683
C2-C3	1,41951	1,41706	1,42843	1,41431	H7-C1-C2	119,22827	119,18022	119,24348	119,20274	H10-C5-C4-C3	-179,78741	-179,72697	-179,9446	-179,70822
C3-N11	1,44141	1,43558	1,43646	1,43481	C1-C2-H8	119,69317	119,7684	119,514	119,79717	C5-C4-C3-N11	-175,57087	-174,8652	-171,68885	-174,63035
N11-Ce25	2,3453	2,32939	2,3791	2,3159	C1-C2-C3	120,34938	120,32451	120,556	120,32813	H9-C4-C3-N11	5,31008	6,205	8,25866	6,54144
Ce25-Cl27	2,51279	2,49415	2,51989	2,4851	C5-C4-H9	120,12305	120,15109	120,24505	120,17127	C1-C2-C3-N11	175,22922	174,51761	171,63468	174,53554
Ce25-Cl28	2,51398	2,49659	2,52308	2,48999	C5-C4-C3	119,94444	119,91564	119,92161	119,85328	H8-C2-C3-N11	-6,606	-7,29678	-12,15397	-7,06471
Ce25-Cl26	2,5088	2,48972	2,51628	2,48212	H8-C2-C3	119,93215	119,88232	119,82244	119,85542	C2-C3-N11-Ce25	-80,29727	-82,00765	-68,40849	-85,12288
N11-C12	1,31862	1,31477	1,3275	1,31188	H9-C4-C3	119,92663	119,92459	119,83331	119,96503	C4-C3-N11-Ce25	94,31413	91,80956	101,87429	88,59235
C12-H13	1,09155	1,09136	1,10078	1,08967	C2-C3-N11	119,85396	119,83516	118,54314	119,82299 (C3-N11-Ce25-Cl26	-168,35627	-171,41883	-165,60543	177,17303
C12-C14	1,44955	1,44596	1,45359	1,44386	C4-C3-N11	120,20196	120,16386	121,20016	120,12207 (C3-N11-Ce25-Cl27	-56,74572	-61,91562	-55,16287	-73,29139
C14-C15	1,42689	1,42287	1,43389	1,42	C3-N11-Ce25	93,80107	91,46831	92,83146	90,76267 (C3-N11-Ce25-Cl28	80,31045	78,14854	83,13195	68,08914
C14-C16	1,42664	1,42245	1,43303	1,41993	C3-N11-C12	129,58412	129,92999	130,3785	129,84793	C3-N11-C12-H13	177,04618	177,72693	171,82877	179,27395
C15-H18	1,0881	1,08779	1,09731	1,08602 (C12-N11-Ce25	136,57452	138,55571	135,75557	139,3649	C3-N11-C12-C14	-3,43002	-2,57768	-9,39387	-0,86257
C16-H20	1,08304	1,08342	1,09358	1,081781	111-Ce25-Cl26	91,02863	89,93048	89,66628	89,02487 C	:126-Ce25-N11-C12	9,36634	6,11007	3,03663	-4,64644
C16-C19	1,39846	1,39536	1,4046	1,393141	111-Ce25-Cl27	114,67037	114,84791	110,63423	111,36632 C	:127-Ce25-N11-C12	120,97689	115,61328	113,47918	104,88915

79,35555 -174,43017 -178,49263 79.02769 176.32074 179.52509	79.02769 176.32074 179.52509		-1,4339 -5,40683 -0,59596	1,28102 -4,92343 -0,61338	78,25738 173,349 179,26556	79,7871 179,3819 -179,99959	0,25432 -0,8717 -0,04077	79,61611 -178,68132 -179,93269),22826 0,53308 0,03299	79,94595 179,59397 -179,98241	0,08793 -0,3434 -0,03477	79,90517 179,56408 179,9319	0,16465 -0,72668 -0,07666	79,87678 179,52797 179,96453	0,05339 -0,18127 -0,02691	79,9348 -179,56886 179,99899	0,09907 0,36851 0,05134	79,91618 -179,71102 -179,94342	79,95662 -179,75058 179,99956	0,05 0,35149 0,00431	79,8888 -179,31107 -179,97902	0,02646 -0,04141 -0,009	79,91229 179,62088 179,97431
08,515/1 Ce25-N11-C12-H13 -0,004/9	07,79778 Ce25-N11-C12-C14 179,51901 -1	21,13267 N11-C12-C14-C15 178,91645 1	13,68112 N11-C12-C14-C16 -1,82429	30,85292 H13-C12-C14-C15 -1,56534	15,46584 H13-C12-C14-C16 177,69391 1	25,02625 C12-C14-C15-C17 179,54322	15,81535 C12-C14-C15-H18 -0,47561	20,88892 C12-C14-C16-C19 -179,28408 -1	19,65292 C12-C14-C16-H20 0,51221	20,63515 C14-C16-C19-H23 179,87723 1	19,86964 C14-C16-C19-C21 -0,15364	19,24143 C14-C15-C17-H22 179,89209 1	19,71192 C14-C15-C17-C21 -0,22042	19,92168 H18-C15-C17-C21 179,79842 1	20,19447 H18-C15-C17-H22 -0,08906	20,22097 H20-C16-C19-C21 -179,95316 -	19,74895 H20-C16-C19-H23 0,07772	120,4229 C16-C19-C21-H24 -179,90295 -1	20,32935 C15-C17-C21-H24 -179,90879 -1	19,58456 H23-C19-C21-H24 0,06624	19,74972 H23-C19-C21-C17 -179,85961 -	19,82738 H22-C17-C21-H24 -0,02133	H22-C17-C21-C19 179,90446 1
109,09481 107,6657 109,20258 1	109,87632 109,13395 109,97122 1	120,12195 120,42658 122,02238 1	113,64217 113,6598 113,52767 1	131,23784 130,9967 130,75291 1	115,11849 115,34288 115,70937 1	125,17923 125,08275 125,06877 1	115,77898 115,81163 115,96267 1	120,83385 120,85246 120,67835 1	119,60636 119,65242 119,443 1	120,69633 120,65137 120,70046 1	119,91431 119,90264 120,04688 1	119,25153 119,24473 119,27018 1	119,69731 119,6962 119,85606 1	119,91702 119,91613 119,96136 1	120,19053 120,18115 120,17367 1	120,20731 120,21451 120,19483 1	119,72052 119,74673 119,75984 1	120,38648 120,4001 120,38815	120,36246 120,33713 120,27877 1	119,60207 119,6043 119,63086 1	119,76451 119,76258 119,76583 1	119,84897 119,83729 119,84516 1	
	1,09532 1,08347Cl26-Ce25-Cl28	1,42067 1,40807Cl28-Ce25-Cl27	1,41689 1,40431 N11-C12-H13	1,09609 1,08421 N11-C12-C14	H13-C12-C14	C12-C14-C16	C12-C14-C15	C14-C16-H20	C14-C15-H18	C14-C15-C17	C14-C16-C19	H20-C16-C19	H18-C15-C17	H23-C19-C16	H22-C17-C15	H22-C17-C21	H23-C19-C21	C19-C21-C17	C16-C19-C21	C15-C17-C21	C19-C21-H24	C17-C21-H24	
	1,08582 1,08533	1,41401 1,4104	1,41021 1,40671	1,08661 1,08605																			
C1/-HZZ	C19-H23 1	C19-C21 1	C17-C21 1	C21-H24 1																			

Thermodynamic Properties

The thermodynamic data can be used to compute the other thermodynamic energies according to relation- ships of thermodynamic functions and estimate directions of chemical reactivity according to the second law of thermodynamics in thermo chemical field, from which the relations among energy, structural and reactivity characteristics of the molecules can be clarified. Knowledge of permanent dipole moment of a molecule helps to determine the molecule's conformations⁴⁹. On the basis of vibrational analysis and statistical thermodynamics. The thermodynamic parameters for the title compound were obtained from the theoretical harmonic frequencies namely heat capacity, entropy, rotational constants, vibration and vibrational zero point energies of the compound have also been computed at the DFT-B3LYP, B3PW91,

Atom	B3LY	P/SDD	B3PW	91/SDD	PBEP	BE/SDD	mPW1P	W91/SDD
	P2-Cl ₃	P2						
H31	0.227	0.205	0.237	0.215	0.244	0.222	0.239	0.218
H32	0.265	0.231	0.271	0.237	0.279	0.245	0.275	0.241
H33	0.224	0.203	0.234	0.213	0.242	0.219	0.235	0.215
C30	-0.47	-0.474	-0.497	-0.449	-0.529	-0.536	-0.504	-0.506
O29	-0.275	-0.313	-0.290	-0.327	-0.225	-0.268	-0.303	-0.338
C1	-0.339	-0.323	-0.356	-0.327	-0.348	-0.333	-0.360	-0.344
C2	-0.291	-0.364	-0.281	-0.367	-0.314	-0.381	-0.275	-0.372
C3	0.223	0.220	0.193	0.227	0.207	0.211	0.181	0.229
C4	-0.258	-0.303	-0.249	-0.304	-0.225	-0.317	-0.257	-0.308
C5	-0.311	-0.333	-0.329	-0.342	-0.324	-0.349	-0.343	-0.349
C6	0.360	0.327	0.395	0.360	0.334	0.311	0.407	0.371
H7	0.269	0.231	0.273	0.237	0.281	0.243	0.278	0.242
H8	0.275	0.242	0.279	0.241	0.292	0.252	0.282	0.247
H9	0.269	0.250	0.274	0.252	0.285	0.262	0.286	0.258
H10	0.283	0.245	0.284	0.246	0.291	0.254	0.292	0.252
N11	-0.341	-0.034	-0.371	-0.067	-0.288	-0.017	-0.387	-0.077
Ce25	0.562		0.576		0.495		0.571	
CI26	-0.056		-0.062		-0.049		-0.048	
Cl27	-0.043		-0.040		-0.037		-0.035	
CI28	-0.054		-0.051		-0.044		-0.045	
C12	-0.251	-0.434	-0.213	-0.400	-0.277	-0.461	-0.202	-0.396
H13	0.267	0.208	0.265	0.210	0.273	0.220	0.270	0.215
C14	0.400	0.395	0.399	0.385	0.414	0.413	0.394	0.377
C15	-0.296	-0.354	-0.286	-0.345	-0.311	-0.363	-0.289	-0.350
C16	-0.280	-0.311	-0.275	-0.302	-0.298	-0.321	-0.275	-0.303
C17	-0.221	-0.223	-0.234	-0.231	-0.230	-0.237	-0.242	-0.237
C19	-0.233	-0.231	-0.246	-0.239	-0.240	-0.245	-0.256	-0.246
C21	-0.177	-0.221	-0.185	-0.227	-0.196	-0.236	-0.191	-0.232
H18	0.244	0.224	0.243	0.224	0.255	0.243	0.248	0.229
H20	0.260	0.262	0.262	0.265	0.271	0.274	0.266	0.270
H22	0.259	0.223	0.260	0.224	0.269	0.234	0.266	0.230
H23	0.252	0.225	0.251	0.225	0.262	0.236	0.257	0.231
H24	0.259	0.225	0.260	0.226	0.262	0.236	0.266	0.232

Table 3: MPA charges in imine (P2) and imine complexed (P2-CeCl₃) at SDD basis set with B3LYP, B3PW91, mPW1PW91, PBEPBE methods

Table 4: Theoretical comp	uted Energy(a.u),	Zero Energy, (Ko	cal/mol), Rotatio	nal Constant(Gl	Hz), Entropy (calι	(mol.K) and Dip	ole moment D(K	cal/mol.K)
	B3LYF	JSDD	B3PV	V91/SDD	PBEPBI	E/SDD	mPW1PW	91/SDD
Thermodynamic Pa- rameters	P2-CI3	2	P2-CI3	2	P2-Cl3	P2	P2-CI3	P2
Total En-ergy(Thermal): E <i>tot</i> (kcal <i>/</i> mol)	165.231	156.944	166.001	157.667	161.658	153.329	167.057	158.735
Heat capacity at const. vol.: Cv(cal/mol.K)	74.507	52.474	74.253	52.296	76.233	54.144	73.769	51.870
Entropy:S(cal/mol)	169.201	119.397	160.677	119.322	170.727	120.427	167.159	119.007
Vibrational energy: E <i>vib</i> (kcal/mol)	163.453	155.167	164.223	155.889	159.881	151.552	165.280	156.958
Zero-point vibrational energy: E∜(kcal/mol) Botational con- stants(Ghz)	151.57885	148.44611	152.39319	149.18289	147.72441	144.61031	153.56278	150.30798
X	0 20233	1 23352	0 20685	1 22372	0 20395	1 24573	0 20867	1 21809
. ~	0.15980	0.24847	0.16106	0.25261	0.15923	0.24380	0.16221	0.25575
Z	0.10552	0.22214	0.10717	0.22559	0.10556	0.21826	0.10818	0.27792
Dipole moment (De-bye)								
ЛХ	-8.7912	-0.4915	-8.6382	-0.5134	-7.1017	-0.2950	-8.5772	-0.5151
μΥ	3.6801	-1.6588	4.2952	-1.7136	5.8090	-1.6631	4.1951	-1.7213
Zh	1.4217	-1.3257	1.4468	-1.3238	1.5532	-1.2643	-1.3979	-1.3253
µtotal	9.6359	2.1796	9.7550	2.2254	9.3055	2.1098	9.6500	2.2326
Total energy (a.u)	-2526.910432	-671.1557335	-2526.546118	-670.901587	-2525.447260	-670.355180	-2526.792928	-670.9971721

mPW1PW91 and PBEPBE levels using SDD basis set are presented in Table 4.

To better understand the complex formation, we note that there is a very large differences between the total energies and dipole moments of imine and the complex with used methods, this great difference shows the low reactivity or the high stability behavior, this explains the complex formation further than the imine formation. On un other hand, the high value of dipole moment of the P2-CeCl3 relative to that of the P2, could partly explain the high stability of the complex, which it is due to the presence of the donor effect of cerium which makes the nitrogen atom strongly electronegative. The biggest value of zero-point vibrational energy (ZPVE) is 153.56 kJ/ mol obtained with mPW1PW91 whereas the smallest one is 147.72 kJ/mol obtained with PBEPBE, While the total energies calculated by the four levels are very close.

CONCLUSION

The comprehensive studies of the molecular structure, Mullikan atomic charges and thermodynamic parameters of the complex formed (E)-N-benzylidene-4- methoxyaniline, CeCl3 suggested that the ligand acts as tetradentate one in the Ce(III) complex formation which is favored over the formation of imine, confirming the utility of the this catalyst (CeCl3) in the synthesis of imines and the nitrogen derivatives or imines training in situ. The comparison of the experimental and calculated frequencie, show that the experimental values are in a good agreement with SDD calculation results and obviously B3LYP function which has given the closets results. Optimal uniform factors were also calculated. Taking into account small variations between calculated and experimental data, we can recommend new scaling factors of 0.9439, 0.9382, 0.9353 and 0.9697 for B3LYP, B3PW91, mPW1PW91 and PBEPBE levels, respectively, at SDD basis set, for the IR spectral future predictions for unknown compounds of this class.

REFERENCES

- Rezaeivala, M.; Keypour, H. Coordination Chemistry Reviews 2014, 280, 203.
- 2. Hayashi, T.; Shibata, H.; Orita, S.; Akitsu, T. *European Chemical Bulletin* **2012**, *2* 49.
- Awual, M. R.; Hasan, M. M.; Shahat, A.; Naushad, M.; waku, H. S.-.; Yaita, T. Chemical Engineering Journal 2015, 265, 210.
- 4. Terzis, A.; Mentzafos, D.; Tajmir-Riahi, H. Inorganica Chimica Acta **1984**, *84*, 187.
- 5. Afkhami, A.; Madrakian, T.; Shirzadmehr, A.; Tabatabaee, M.; Bagheri, H. *Sensors and Actuators B: Chemical* **2012**, *174* 237
- Afshar, S.; Bullock, J. I. Inorganica Chimica Acta 1980, 38, 145.
- Fenton, D. E.; Vigato, P. A. Chem. Soc. Rev 1988, 17, 69.
- A.Mouadili; I.Lakehal; A.Takfaoui; F.Halaimia; H.Nacer; M.L.Hamlaoui; B.Hammouti; M.Messali; R.Touzani *J. Mater. Environ. Sci.* 2014, *5*, 715.
- Takfaoui, A.; Lakehal, I.; Bouabdallah, I.; Halaimia, F.; Nacer, H.; Hammouti, B.; Touzani, R. J. Mater. Environ. Sci. 2014, 5,

753.

- Piro, N. A.; Robinson, J. R.; Walsh, P. J.; Schelter, E. J. *Coordination Chemistry Reviews* 2014, *260*, 21.
- 11. Zamani, H. A.; Ganjali, M. R.; Adib, M. Sensors and Actuators B: Chemical 2007, 120, 545.
- 12. Maity, D.; Chattopadhyay, S.; Ghosh, A.; Drew, M. G.; Mukhopadhyay, G. *Inorganica Chimica Acta* **2011**, *365*, 25.
- 13. Kocyigit, O.; Kursunlu, A. N.; Guler, E. *Journal* of hazardous materials **2010**, *183*, 334.
- 14. Bhowmik, P.; Drew, M. G.; Chattopadhyay, S. *Inorganica Chimica Acta* **2011**, *366*, 62.
- Esmaielzadeh, S.; Azimian, L.; Shekoohi, K.; Esfandiari, H.; Asadi, M.; Zare, Z.; Nejad, A. R.; Mohammadi, K. *Inorganica Chimica Acta* 2013, *405*, 155.
- Ali, M. A.; Haroon, C. M.; Nazimuddin, M.; jumder, S. M.-u.-H. M.-.; Tarafder, M. T.; Khair, M. A. *Transition Metal Chemistry* 1992, *17*, 133.
- 17. Hossain, M. E.; Alam, M. N.; Ali, M. A.; Nazimuddin, M.; Smith, F. E.; Hynes, R. C.

Polyhedron 1996, 15, 973.

- Tan, X.-J.; Liu, H.-Z.; Ye, C.-Z.; Lou, J.-F.; Liu, Y.; Xing, D.-X.; Li, S.-P.; Liu, S.-L.; Song, L.-Z. *Polyhedron* **2014**, *71*, 119.
- Bagihalli, G. B.; Avaji, P. G.; Patil, S. A.; Badami, P. S. *European journal of medicinal chemistry* **2008**, *43*, 2639.
- Sathisha, M.; Shetti, U. N.; Revankar, V.; Pai, K. *European journal of medicinal chemistry* 2008, 43, 2338.
- 21. RAIKWAR, K.; AGARWAL, D. D. Orient. J. Chem., 2015, 31, 547.
- ABDULFATAI, A. S.; ADAMU, U.; SULAIMAN,
 I.; HAMZA2, A. Orient. J. Chem., Vol. 31(4), (2015) 2015, 31, 1985.
- 23. AL-KHODIR, F. A. I. Orient. J. Chem **2015**, *31*, 1277.
- Fan, Y.-H.; Wang, A.-D.; Bi, C.-F.; Xiao, Y.; Bi, S.-Y.; Zhang, X.; Wang, Q. *Synthetic Metals* 2011, *161*, 1552.
- Silva, C. M. d.; Silva, D. L. d.; Modolo, L. V.; Alves, R. B.; Resende, M. A. d.; Martins, C. V.; Fa´tima, A. d. *Journal of Advanced research* 2011, *2*, 1.
- 26. Kidwai, M.; Anwar, J. *Journal of the Brazilian Chemical Society* **2010**, *21*, 2175.
- Sindhu, Y.; Athira, C.; Sujamol, M.; Joseyphus, R. S.; hanan, K. M.-. *Metal-Organic, and Nano-Metal Chemistry* 2013, 43, 226.
- Wang, Q.; Huang, Y.; Zhang, J.-S.; Yang, X.-B. Bioinorganic Chemistry and Applications 2014, 2014, 9.
- 29. Chinthaparthi, R. R.; Gangireddy, C. S. R.; Mudumala, V. R.; Gundluru, M.; Chamarthi, N.; Cirandur, S. R. *Tetrahedron Letters* **2013**, *54*, 6071.
- Ubani, O. C.; Ngochindo, R. I.; Odokuma, L.
 O. *J. Chem. Pharm. Res* 2015, *7*, 720.
- 31. Adly, O. M.; Taha, A.; Fahmy, S. A. *Journal of Molecular Structure* **2015**, *1093*, 228.
- 32. El-Wahab, Z. A.; Mashaly, M.; Faheim, A. *Chem Pap* **2005**, *59*, 25.
- Shebl, M. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2008, 70, 850
- Montazerozohori, M.; Tavakol, H.; Kheiri, S.; Musavi, S.; Joohari, S. *Bulgarian chemical* communications 2014, 46, 96.
- 35. Glendening, E. D.; Feller, D.; Thompson, M. A. Journal of the American Chemical Society

1994, *116*, 10657.

- Gabal, M.; Elroby, S. A.; Obaid, A. *Powder Technology* 2012, *229*, 112.
- Yabalak, E.; Gu[¨]nay, F.; Kasumov, V.T.; Arslan, H. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy **2013**, *110*, 291.
- Frisch, M.; Trucks, G.; Schlegel, H. B.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Mennucci, B.; son, G. P.-. *Gaussian 09, revision a. 02, gaussian, Inc., Walling- ford, CT 200.*
- 39. Yang, Y.; Gao, H. *Journal of Molecular Structure* **2012**, *1013*, 111.
- Anto, P.; Panicker, C.Y.; Varghese, H. T.; Philip, D.; Arpaci, O. T.-.; Tekiner-Gulbas, B.; Yildiz, I. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2007, 67, 744.
- Saxena, R.; Kandpal, L.; Mathur, G. Journal of Polymer Science Part A: Polymer Chemistry 2002, 40, 3959.
- 42. Bellamy, L. J. *Chapman and Hall London* **1975**, *1*.
- Xie, J.; Chang, J.; Wang, X. Application of ir in organic chemistry and medicinal chemistry 2001.
- 44. Li, L.; Cai, T.; Wang, Z.; Zhou, Z.; Geng, Y.; Sun, T. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy **2014**, *120*, 106.
- Mary, Y. S.; Jojo, P.; Panicker, C. Y.; Alsenoy, C. V.; Ataei, S.; Yildiz, I. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2014, 122, 499.
- 46. Roeges, N. P. *Wiley* **1994**.
- Kumar, V.; Panikar, Y.; Palafox, M.; Vats, J.; Kostova, I.; Lang, K.; Rastogi, V. Indian Journal of Pure & Ap- plied Physics 2010, 48, 85.
- 48. Kalsi, P. New Age Inter- national 2007.
- 49. Sathyanarayana, D. N. *New Age International* **2007**.
- 50. Kostova, I.; Momekov, G. *European journal* of medicinal chemistry **2008**, *43*, 178.
- Sinha, L.; Prasad, O.; Karabacak, M.; Mishra, H.; Narayan, V.; Asiri, A. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2014, 120, 126.
- Arjunan, V.; Govindaraja, S. T.; Ravindran, P.; Mohan, S. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2014, 120, 473.