

ORIENTAL JOURNAL OF CHEMISTRY

An International Open Free Access, Peer Reviewed Research Journal

www.orientjchem.org

ISSN: 0970-020 X CODEN: OJCHEG 2016, Vol. 32, No. (2): Pg. 895-901

Lupane-Type Triterpenoids and Sterol from Zizyphus Spina Christi Grown in Sudan

NAWAL MOHAMED IBRAHIM ELNAGAR*1,2 and BARAKAT MOHAMMED MODAWI3

¹Chemistry Department, Faculty of Education, University of Kordofan.Sudan. ²Chemistry Department, Faculty of Science, University of Hafr Albatin, Saudi Arabia. ³Chemistry Department, Faculty of Science, University of Khartoum.Sudan. *Corresponding author E-mail: nawalelnagar@yahoo.co.uk

http://dx.doi.org/10.13005/ojc/320215

(Received: December 07, 2015; Accepted: January 16, 2016)

ABSTRACT

The fine powder of the shade-dried root bark of *Zizyphus spina Christi* [Rhamnaceae] was exhaustively extracted with aqueous ethanol at room temperature. Fractionation, isolation and purification were carried out with column chromatography. Characterization and identification of the isolated pure components were based on their spectroscopic data and comparison with data cited in literature. As a result four new compounds, three of them are lupane-type tritepenoids and the fourth compound is sterol were identified. These compounds are lupeol, betulinaldehyde, betulin and β -sitosterol.

Keywords: *Zizyphus Spina Christi,* Root Bark, Lupeol, Betulinaldehyde, β- Sitosterol Betulin.

INTRODUCTION

Throughout human history, natural products have been widely used as remedies¹⁻⁵ to cure and treat various illnesses. Humans are continuously learning more about the indispensible therapeutic properties of natural products as well as becoming conscious of the importance of a healthy life style-to gain life quality.

An impressive amount of natural substances has been high-lighted by the media^{3,6} due to their wide-ranging properties. Among these substances are the

following lupane- type pentacyclic triterpenoids: Lupeol (1), a significant lupane- type pentacyclic triterpenoid is a common constituent of grape, bazel nut, olive oil, mango pulp and it was isolated from the stem bark of Cralaeva nurvalis⁶ [capparidacaea]. Lupeol was reported to be a constituent of the white part of birch bark [Betula papyfera] and red alder Alnus rubra⁷⁻⁹.

Lupeol exhibits a broad spectrum of biological activities ⁷ and can be used as a chemopreventive substance to avoid several diseases. Betulinaldehyde (2) was isolated from many plant species¹⁰ and it was the most intensively studied constituent of the birch bark triterpenoids because of its unique anti- cancer and anti HIV bioactivity^{11,12}.

Betulinic acid (3) together with lupeol, betulinaldehyde and betulin were isolated from the stem bark of Tectona grandis¹⁰, Betulinic acid was also isolated from the root bark of *Z. spina Christi*.^{13-16.}

Betulinic acid was synthesized from betulin by selective oxidation¹⁷. The reaction required the choice of the proper oxidizing reagent and conditions so that the oxidation reaction takes place predominantly at the primary C-28 hydroxyl group leaving the secondary hydroxyl group at C-3 in fact. Betulinic acid can then be easily obtained from the resulting betulinaldehyde.

Betulin(4), a pentacyclic triterpene was obtained for the first time in 1788 from birch bark [Betula papyfera]⁸ Betulin occurs in large amounts in the free form in the outer bark of white birch ⁹and it was isolated from alnus species, Trochoden dron, Vicia faba and many other plants¹⁸.

Since the 1970s, intensive and extensive research has been committed to explore more about the medicinal application of betulin and its derivatives, in particular in their anti-tumor and anti-HIV biological activities^{19,20}.

Betulin is commonly used in medicine, pharmaceutical, perfumes manufacturing and in food and chemical industries.²¹ β-sitosterol (5) the

Scheme 1: Structure of compound 1 20(29)lupen-3-OI (lupeol)

commonest sterol of higher plants which is widely distributed in plants and also occurs in marine organisms.²²⁻²²

 β -sitosterol is an important anti-hyper cholesterol, an estrogenic and a hypolipidemic agent. It shows antibacterial and antifungal properties²³⁻²⁵.

MATERIALS AND METHODS

The plant material

The plant Z. *spina Christi* was collected from Kordofan area (Sudan) and identified by the Botany department, Faculty of science University of Khartoum. The root bark was carefully peeled, shade-dried and finally powdered.

Chemicals

The following either analytical grade or carefully purified and perfectly dried chemicals were used. Petroleum ether (pet.ether)[60-80°C], ethanol, methanol, acetone, dichloromethane (DCM), silica gel for column chromatography [100-200 mesh], silica gel for thin-layer chromatography (TLC) GF254 and anhydrous sodium sulphate.

Instruments

The following spectroscopic techniques were used wherever needed:

- 1. Ultra Violet and Visible absorption Spectroscopy [UV/Vis].
- 2. Infrared Spectroscopy [IR].
- Mass Spectroscopy[Electron- Impact Mass Spectrometry EI-MS].
- 4. Nuclear Magnetic Resonance Spectroscopy [NMR].
- One Dimensional NMR Spectroscopy, Proton Nuclear Magnetic Resonance[¹HNMR], carbon-13 Nuclear Magnetic Resonance [¹³CNMR] and Destortionless Enhancement through Polarization Transfer [DEPT].
- Two Dimensional NMR Spectroscopy, Proton Correlated Spectroscopy [COSY], Nuclear Over-houser Effect Spectroscopy [NOESY], Hetronuclear Single Quantum Coherence Spectroscopy [HSQC] and Hetronuclear Multiple bond Correlation Spectroscopy [HMBC].

Extraction

The fine-dried powder of the root bark of Z. *spina christi*was exhaustly extracted with 80% ethanol for 72 hours at room temperature with frequent shaking. The aqueous ethanol extract was filtered through Watman No. 42 filter paper. The solvent was carefully removed, as completely as possible; under reduce pressure using a rotatory evaporator.

The wet crude residue was then dissolved in ethanol and perfectly dried with anhydrous sodium sulphate. The ethanol solution of the crude extract was filtered as before and then centrifuged. The solvent was carefully removed and a mean percentage yield of 28 was obtained.

Column Chromatography

A glass column [120x8cm] well packed with silica gel [100- 200 mesh] in petroleum ether was used for the separation of the components of the crude extract. The crude residue was completely dissolved in ethanol and thoroughly mixed with silica gel. Ethanol was completely removed and the silica gel containing the crude extract was carefully packed on the top of the column.

The column was patiently eluted first with pet.ether followed by successive elution with [5:1], [2:3] and [1:3] pet.ether\DCM solvent mixtures. All fractions obtained from each of the above three successive elutions were carefully monitored with thin-layer chromatography and similar fractions from each successive elution were combined. Three, A,

Scheme 2: Structure of compound 2 20(29)-lupen-3-ol -28-al (betulinaldehyde)

B and D combined fractions were obtained from the above successive elutions. Each of the combined fractions was perfectly dried and filtered. Careful removal of the solvent mixtures from each resulted in the formation of a yellow oily substance from A, a white grey solid from B and a pale green sticky material from D.

Isolation and purification of components

A glass column [40 x1 cm], packed with the same silica gel in pet.ether was used for the separation of the components of the yellow oily substance. The crude substance was dissolved in ethanol and thoroughly mixed with silica gel. After complete removal of ethanol the silica gel containing fraction A was carefully packed on the top of the column.

The column was eluted first with pet. ether acetone [9:1] and finally with pet. ether acetone [1:1]. Thin-layer chromatography monitoring of all fractions obtained led to the accumulation of two combined fractions [A₁ and A₂].

Removal of solvent mixture from each gave a white solid in both cases. Both white solids $[A_1 \text{ and } A_2]$ were crystallized from pet.ether\acetone [1:1]. A_1 is white needles, m.p 216-220°C whereas A_2 is white crystals, m.p 188-190°C.

The white grey solid was similarly chromatographedusing a glass column [80 X 2cm], packed with the same stationary phase in pet. ether. The column was carefully eluted first with

Scheme 3: Structure of compound 3 3-hydroxy-20(29)-lupen-28-oic acid (betulinic acid) pet.ether\acetone [9:1] and finally with pet.ether\acetone [3:7] solvent mixtures. Thin-layer monitoring of all fractions obtained resulted in the accumulation of similar fractions in two combined fractions, B_1 and B_2 . The two combined fractions [B_1 and B_2] were perfectly dried separately, filtered and centrifuged.

When the solvent mixture was completely removed from each combined fraction, the resulting solids B_1 and B_2 were both separately crystallized from DCM and pet.ether\acetone[2:3], B_1 gave white needles, m.p. 282-284°C whereas B_2 gave a white solid with pleasant smell, m.p. 140-143°C.

A glass column [60X2cm] packed with the same silica gel in pet.ether was used for the separation of the components of the pale green sticky material [D]. The column was successively eluted with pet.ether\acetone[9:2] and [3:8]and finally with acetone\methanol [1:1] and [1:9]. TLC monitoring of all fractions led to the accumulation of only one main combined fraction. Perfect drying of this combined fraction, filtration, centrifuge and complete removal of the solvent mixture, gave a white solid D_2 which was crystallized from acetone\ methanol [2:3], m.p. 250-252°C.

Spectroscopic Studies

The isolated and purified components $[A_1, A_2, B_1, B_2 \text{ and } D_2]$ were separately subjected to the following spectroscopic investigations using the relevant technique accompanied by the proper interpretation.

Scheme 4: Structure of compound 420(29)lupen-3,28-diol (betulin)

Component A₁

 $\label{eq:UV} \begin{array}{l} UV\lambda_{max}(CHCl_3)\ 242nm.El-MS,\ M/Z.\ 426.3,\\ M^+:\ 411.4,\ 315.3,\ 297.2,\ 218.2,\ 207.2,\ 189.2,\\ 175.1,\ 147.1,\ 135.1,\ 121.1,\ 95.1,\ 81.1,\ 69.1,\ 55.0,\\ 43.0.IR\ v_{max}.\ (KBr)\ (cm^{-1}),\ 3346\ (OH),\ 2925\ (C-H),\\ 1452\ (C=C),\ 1381\ (CH_3\text{-}C),\ 1038\ (C-O),\ 880\ (C-H). \end{array}$

¹H NMR (300MHZ, CDCl_a), δ ppm); shows the protons chemical shifts at H δ 4.66 (1H,d), at 4.54 (1H,d), at H δ 3.17 (1H,dd), at H δ 2.36 (1H,td) and seven singlet methyl protons at H δ 0.74, 0.76, 0.81, 0.92, 0.94, 1.02 and 1.67. 1H - 13C HSQC (400MHZ, CDCl_a) H δ (ppm); shows that the two protons at H δ 4.66 and 4.54 are bonded to the same carbon atom at 109.0) H δ ppm and the proton at H δ 3.17 is bonded to a carbon atom at 79.0) ppm.1H-1H COSY (400MHZ, CDCl₃) δ ppm); shows that H₂₉ is correlated to H₃₀. H_{29(a8b)} are correlated to each other. H₂ is correlated to H_1 and H_3 and H_{21} is correlated to H_{19} and H_{22} .¹ $H - {}^{13}C$ HMBC (400MHZ, CDCl₃) δ ppm); shows that H₃₀ is correlated to C_{29} , C_{20} & C_{19} . H_{27} is correlated to C_{13} , C_{14} & C_{15} . H_{26} is correlated to C_9 & C_{14} . H_{25} is correlated to $C_{1}, C_{8}, C_{9}, C_{10}\&C_{11}$. H_{24} is correlated to $C_{3}, C_{4}, C_{5}\&C_{10}$. H_{23} is correlated to $C_{3}C_{4}\&C_{5}$ and H_{18} is correlated to C13, C17, C19, & C20. H-1H NOESY (400MHZ, CDCl3) ppm); shows correlation between H₃ and Me_(23&24).

Component A₂

UV λ_{max} (CHCI₃): 241.0nm. EI-MS M/Z. 440.1, M⁺:426.1, 411.1, 379.1, 315.1, 207.1, 189.1, 175.1, 161.1, 135.1, 121.0, 95.1, 81.1 and 55.0. IR v_{max.} (KBr) (cm⁻¹): 3411 (OH), 2939 (C-H), 1724 (C=O), 1641 (C=C), 1453-1379 (CH₃-C), 1039 (C-O) and 885 (C-H).

Scheme 5: Structure of compound 5 24-ethyl-5(6)-cholestene-3-ol (β-sitosterol)

899

¹HNMR (300 MHZ,CDCl₃)(ppm); shows the protons chemical shifts at δH 4.73 (1H,s), at 4.61 (1H,s), at δH 3.16 (1H,dd), at δH 2.98 (1H,m) and six singlet methyl protons at 0.73, 0.86, 0.83, 0.94, 0.95 and 1.67. ${}^{1}H - {}^{13}C$ HSQC (400MHZ, CDCl₂) δ ppm); shows that the two protons at 4.73 and 4.61 are bonded to 110.0) carbon, the proton at δH 3.16 is bonded to 77.2) carbon. 1H-1H COSY (400MHZ, CDCl₃) ppm); shows that H₂₉ is correlated to H₃₀. $H_{29(a8b)}$ are correlated to each other. H_{g} is correlated to H₁₁ and H₂₁ is correlated toH_{19 &}H₂₂, ¹H-1³C HMBC (400MHZ, CDCl₃) ppm); shows that H₃₀ is correlated to $C_{29} C_{20} \& C_{18}$. H_{27} is correlated to $C_{13} C_{14} \& C_{15}$. H_{26} is correlated to $C_9 \& C_{14}$. H_{25} is correlated to $C_{1,1}$ C_8 , C_9 & C_{10} . H_{24} is correlated to C_3 , C_4 , C_5 & C_{10} , H_{23} is correlated to C3, C4 &C5. H18 is correlated to C17, C20 & C₂₉¹H-¹H NOESY (400MHZ, CDCl₃) δ ppm); shows the correlation between H₃ and Me₂₃₈₂₄

Component B₁

UV λ_{max} CHCl₃) 209.0 nm.E1-MS M/Z.456.2, M⁺: 438.2, 423.2, 410.3, 395.2, 316.3, 302.3, 259.3, 248.3, 207.3, 189.3, 175.4, 161.3, 135.4, 95.4, 81.4, 69.4, 55.4, 43.4.

 $IR v_{max.} (KBr) (cm^{-1}): 3450 (OH), 2937 (C-H), 1686 (C=O), 1449 (C=C), 1378 (CH₃-C), 1189 (C-O), 883 (C-H).¹H NMR (400 MHZ, CDCl₃) <math>\delta$ (ppm); shows the chemical shifts of protons at 4.71 (1H,s), at 4.58 (1H,s), at 3.17 (1H,dd), at δ H 2.98 (1H,m) and six singlet methyl protons at δ H 0.73, 0.80, 0.92, 0.94,0.96 and 1.68.

¹H – ¹³C HSQC of component B₁ (400 MHZ, CDCl₃) δ(ppm); shows that the two protons at 4.71 and 4.58 are bonded to 110.0) carbon, the protonat 2.98 is bonded to 47.0) carbon and the proton at 3.17 (1H,s) is bonded to 79.0) carbon.¹H-¹H COSY (400 MHZ, CDCl₃) δ(ppm); shows that H₂₉ is correlated to H₃₀. H_{29(a&b)} are correlated to each other. H₃ is correlated to H₂. H₂₁ is correlated to H₁₉ _aH₂₂ and H₁₅ is correlated to H₂. H₂₁ is correlated to H₁₉ _aH₂₂ and H₁₅ is correlated to H₁₆.¹H – ¹³C HMBC (400 MHZ, CDCl₃) δ(ppm); shows that H₃₀ is correlated to C₂₉, C₂₀& C₁₉. H₂₇ is correlated to C₁₃, C₁₄& C₁₅. H₂₆ is correlated to C₉ & C₁₄. H₂₅ is correlated to C₁, C₈, C₉&C₁₀. H₂₄ is correlated to C₃, C₄, C₅, C₁₀, & C₂₃, H₂₃ is correlated to C₃, C₄, C₅, C₁₀, & C₂₃, H₂₃ is correlated to C₃, C₄, C₅, C₁₀, & C₂₃, H₂₃ is correlated to C₃, C₄, C₅, C₁₀, & C₂₃, H₂₃ is correlated to C₃, C₄, C₅, C₁₀, & C₂₃, H₂₃ is correlated to C₃, C₄, C₅, C₁₀, & C₂₃, H₂₃ is correlated to C₃, C₄, C₅, C₁₀, & C₂₃, H₂₃ is correlated to C₃, C₄, C₅, C₆, & C₂₄ and H₁₈ is correlated to C₁₃, C₁₇, C₂₀, C₂₀, & C₂₉.

 $^1\text{H-}{}^1\text{H}$ NOESY (400 MHZ, CDCl_3) (ppm); shows the correlation between H_{16} and H_{22}

Component B₂

EI-MS M/Z 414.3: M+396.3, 381.3, 351.2, 329.2, 303.2, 289.2, 273.2, 255.2, 199.1, 173.1, 159.1, 145.0, 119.0, 107.0, 81.0, 69.0, 55.0.IR v_{max} (KBr) cm⁻¹ 3363 (OH), 2925 (C-H), 1687.6 (C=O), 1458.0 (C=C), 1377 (CH₃-C), 1230.5 (C-O), 1037.6 (C-O) and 883.3 (C-H). ¹H NMR (300 MHZ, CDCl₃ + CD₃OD) ppm); shows the protons chemical shifts at δH 5.23 (1H,s), at δH 3.4(1H,d), at δH 3.16 (1H,d), and six singlet methyl protons at $\delta H 0.57$, 0.68, 0.70, 0.72, 0.80 and 0.91.13C NMR (500 MHZ, CDCl, + CD₃OD) ppm), shows the ¹³C chemical shifts of C₃ at δC (70.5 ppm), of C_{_5} (140.8 ppm) and of C_{_6} at δC (121.7 ppm).¹H - ¹³C HSQC (500 MHZ, CDCl₂ + CD₃OD) δ (ppm), shows that the proton at 5.23 is bonded to 121.8 carbon and the two protons at 3.4 and at 3.16 are bonded to 70.5 carbon.1H-1H COSY (500 MHZ, CDCl₃ + CD₃OD) δ (ppm); shows that H_a is correlated to H_7 . $H_{3(a\&b)}$ are correlated to each other, H_3 is correlated to $H_2\&H_4$. H_{20} is correlated to $H_{21}\&H_{22}$ and H_{24} is correlated to H_{25} ¹H – ¹³C HMBC (500 MHZ, CDCl₃ + CD₃OD) ppm); shows that H₂₈ is correlated to C₂₃ C₂₄ C₂₅ & C₂₉. H₂₁ is correlated to C₁₇ C₂₀ & C₂₂. H_{20} is correlated to $C_{23}\&C_{24}$. H_{19} is correlated to $C_{1,}C_{5}$, $C_{9}\&C_{10}$. H_{18} is correlated to C_{11} , C_{12} , C_{13} , C_{14} , $\&C_{17}$. H_{8} is correlated to C₉. H₇ is correlated to C₉ C₁₁ C₁₃ & C₁₄. H_6 is correlated to C_4 , C_7 , C_8 , $\&C_{10}$, and H_4 is correlated to C1. C2. C3. C5 & C6. 1H-1H NOESY (500 MHZ, CDCI3 + CD₃OD) δ (ppm); shows the correlation between H_{6} (δ H 5.23) H_{4} (δ H 2.25) and H_{7} (δ H1.87), between H_{4-a} 2.25)and H_{4-b} 2.11), between H_7 1.87) and H_8 $(\delta H1.35)$ and between H₃ $(\delta H3.4)$ H₄ $(\delta H2.25)$ and H₁₀ (δH 0.91).

Component D₂

UV λ_{max} (CHCl₃) 442.0 nm. EI-MS M/Z. 442.3, M⁺: 424.3, 411.3, 302.2, 288.2, 248.1, 207.7, 189.1, 175.1, 147.1, 135.1, 95.0, 81.0, 55.0. IR v_{max} (KBr) (cm⁻¹): 3417.8 (OH), 2927.4 (C-H), 1447.9 (C=C), 1378.3 (CH₃-C), 1032.2 (C-O) and 882.9 (C-H).¹HNMR (300 MHZ, CDCl₃) δ (ppm); shows protons chemical shifts at δ H 4.66 (1H,s), at δ H 4.71 (1H,s), at δ H 3.17 (1H,dd), three alcoholic protons at 3.78(1H,d), 3.3(1H,d), one proton at 2.36 (1H,dt) and six singlet methyl protons at δ H 0.74, 0.80, 0.92, 0.94, 1.0 and 1.68. $^{1}\text{H} - ^{13}\text{C}$ HSQC (400 MHZ, CDCl₃) (ppm); shows that the two protons at 4.66 & 4.71 are bonded to (δ C 110.0) ppm carbon, a proton at is bonded to 79.0 ppm carbon and two protons at 3.3 & 3.78 are bonded (δ C 60.5 ppm) carbon.

¹H-¹H COSY (400 MHZ, CDCl₃) δ (ppm); shows that H₂₉ is correlated to H₃₀. H_{29(a&b)}are correlated to each other. H₃ is correlated to H₂. H₂₁ is correlated toH_{19.8}H₂₂ and H₁₅ is correlated toH₁₆.¹H – ¹³C HMBC (400 MHZ, CDCl₃) δ (ppm); shows that H₃₀ is correlated to C₂₉, C₂₀& C₁₉. H₂₇ is correlated to C₁₃, C₁₄ & C₁₅. H₂₆ is correlated to C₉ & C₁₄. H₂₅ is correlated to C₁, C₅, C₉&C₁₀. H₂₄ is correlated to C₃, C₄, C₅ & C₂₃. H₂₃ is correlated to C₃, C₄, C₅ & C₂₄, and H₁₉ is correlated to C₁₈, C₂₀, C₂₁, C₂₉ & C₃₀.

 $^1\text{H-}^1\text{H}$ NOESY (400 MHZ, CDCl₃) δ (ppm); shows a correlation between H₃ 3.17) and Me_{_{23&24}} 0.94 & 0.74) and between H₁₈ 1.6) and H_{_{28(abb}} 3.3 &3.78).

RESULTS AND DISCUSSION

Z. *spina christi* family Rhamnaceae is widely distributed in the tropical and subtropical regions of the World. The tree is a multipurpose plant,widely used in folk medicine²¹ and its delicious fruit²² has a limited commercial value.

The fine powder of the shade-dried root bark was exhaustively extracted with aqueous ethanol. The dry crude extract [28% mean yield], was carefully and patiently subjected to intensive and extensive fractionation using column chromatography.

Subsequent monitoring with thin-layer chromatography and refractionation of the resulting combined similar fractions led to the isolation of five components referred to as A_1 , A_2 , B_1 , B_2 and D_2 . Which were vigorously purified.

Characterization and structure elucidation of the isolated and purified above components were based on different spectroscopic data including 1D and 2D NMR spectroscopy.

Careful study of the proton nuclear magnetic resonance spectroscopic data for each

of the components A_1 , A_2 , B_1 , B_2 and D_2 revealed that these components have triterpene skeletons. The HSQC and COSY spectroscopic investigations showed that the above triterpene skeletons are of lupane-type.

Proper interpretation of the infrared analytical spectroscopy and the Hetronuclear Multiple bond Correlation Spectroscopy led to the possible suggestions that the structures of the above components might be: 20(29)-lupen-3-ol, 20(29)lupen-3-ol-28-al, 20(29)-lupen-3-ol-28-oic acid, 20(29)-lupen-3,28-diol respectively. Their NOESY spectroscopic correlations data confidently confirm the above suggested structures. Identification of these components was based on comparing their spectroscopic data with literature data given for triterpenes isolated from plant materials. These components are lupeol, betulinaldehyde, betulinic acid and betulin respectively.

Study of the ¹HNMR, HSQC and COSY of spectroscopic data indicate that component B_2 is Sterol. Careful interpretation of the infrared resonance spectra and the HMBC correlation spectra showed that the structure of B_2 might be 24-ethyl-5(6)-cholestene-3-ol. The NOESY correlation spectra of B_2 confirmed the determined structure and comparison with literature data given for steroids isolated from plant species proved that B_2 is â-sitosterol. Thus all the isolated components are known compounds previously obtained from other plants.

To the best of the author knowledge, lupeol, betulinaldehyde, betulin and β -sitosterol were isolated for the first time from the root bark of Z. *spina Christi* grown in Sudan.

ACKNOWLEDGEMENT

We are highly indebted to Prof. Mohammed Igbal Choudhary and Dr. Achyut Adhikari and all members of Hussin Ebrahim Jamal (HEJ) research institute of chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi-Pakistan, for their indispensible help and constructive advices.

REFERENCES

- 1. Sofowora, Medicinal plants and Traditional Medicine in Africa, John Wiley and Sons limited. (1982)
- Abdel wahhab, M. A.; Omara, E. A; Abdel Gali, M. M.; Hassan, N. S.; Nada, S. A.; Saeed, A.; Elsayed M. M. African Journal of Traditional, Complementary and Alternative Medicines. 2007, 4, 248-256.
- Sofowora, A. Medicinal Plants and Traditional Medicines in Africa. Chichester John, Willey & Sons New York; 256. (1993).
- Steven, M.; Russell, J. C.; Molyneux, J.; Bioactive Natural Components of the petroleum ether fraction from the root bark ethanol extract using GC\MS I Products Detection, Isolation and Structural Determination Taylor & Francis, USA, (2008).
- 5. New man, D.J; Cragg G.M. Journal of Natural Products. 2007, 70, 461-477.
- Natural Products Reports, New York. 1985, 26, 299- 306.
- International Journal of Biochemical and Pharmaceutical sciences. Global Science Books (2009).
- 8. Basa Vara, J.a.; H. S. *J. Pharm. Science and Res.*, **2010**, *3*, 13 15.
- Agar Wal, R. B. ; and Rangari, V. D. Indian Journal of Phamacology. 2003, 35,284 -287.
- 10. Indian Journal of Pharmaceutical Sciences. **1988**, *50*,124 -125,.
- 11. Slinivasan, T. *BioOrganic and Medicinal Chemistry Letters.* **2002**, *12*, 2803 -2806.
- 12. Shah, A. H; Pandey, V.B ; Eckhard, G. ,

Tschesche, R. J. Nat. Prod. **1985** 48, 555-558.

- 13. Jan Sarek; *J. Med. Chemistry.* **2003**, *71*, 5402 -5415.
- Shah ,A.H. ; Ageel, A.M.; Tarig, M.; Mossa, J.S.; Al-Yahya, M.A. Chemical constituents of the stem bark of Zizyphus spina Christi. Fitoterapia. 1986, 57,452-454,.
- 15. Anthony, C.; Dweck, F.L.S . *Personal Care Magazine* . **2005**, 2-5.
- Adzu, B.; Haruna, A.K.; Ilyas M.; Pateh, U.U; Tarfa, F.D.; Chindo, B.A; Gamaniel, A.S. *Journal of Pharmacy and Nutrition Sciences.* 2011, 1, 48 -53.
- 17. Hongyan Liu; Synthesis of Betulinic acid from Betulin; M.Sc of science; *Natural library* of Canada; Acquisitions and Bibiographic Servicas; **2001**.
- 18. Yunusoy, M. S. Russion Plant, 6, pp. CODEN, RUXX, 67, RU 2270202 C1 20060220.
- EL Znhmer, D. V. XLI 2Q. *Drugs.* 2007, *7*,359 373.
- Fujioka T.; Kashiwada Y.; Kilkuskie R. E.; Consentino L. M.; Ballas L. M.; Jiang J. B.; Janzen W. P. *Journal of Natural Products*. 1994, *57*, 243 – 247.
- 21. www/Natural News. Com., Natural health, Natural living, Natural News.
- 22. Sudhersan C.; Hussain J. Turk J Bot. **2003**, *27*,167-171.
- 23. Steele, J. A. JOC. **1963**, *28*, 571-572.
- 24. Mastomato, T. *Phytochemistry.* **1983**, *22*,2622-24.
- 25. Aizawa, K. Org Mass Spectrom. **1974**, *9*, 470 -79.