

ORIENTAL JOURNAL OF CHEMISTRY

An International Open Free Access, Peer Reviewed Research Journal

www.orientjchem.org

ISSN: 0970-020 X CODEN: OJCHEG 2015, Vol. 31, No. (4): Pg. 2395-2399

(Acridine)(tetrahydroborato)zinc Complex [Zn(BH₄)₂(acr)]: A New Stable and Efficient Reducing Agent

SINA MOHAMMADI and DAVOOD SETAMDIDEH*

Department of Chemistry, Mahabad Branch, Islamic Azad University, Mahabad, Iran. *E-mail: davood.setamdideh@gmail.com; d.setamdideh@iau-mahabad.ac.ir

http://dx.doi.org/10.13005/ojc/310470

(Received: August 01, 2015; Accepted: September 18, 2015)

ABSTRACT

(Acridine)(tetrahydroborato)zinc complex[Zn(BH₄)₂(acr)] has been prepared by complexation of oneequimolar amounts of zinc tetrahydroborate and one equimolar amounts of acridine at room temperatureas gray stable reducing agents. Also, [Zn(BH₄)₂(acr)]has been used for reduce of different carbonyl compounds such as aldehydes, ketones, α , β -unsaturated carbonyl compounds, acyloins and a-diketones to their corresponding alcohols in excellent yields (85-95%). The reduction reactions have been carried outwithin 30-120 min by using of 0.5-1 equivalents of [Zn(BH₄)₂(acr)] in CH₃CN at room temperature or under reflux conditions.

Key words: $Zn(BH_4)_2$, Acridine, Reduction, Carbonyl Compounds.

INTRODUCTION

 $Zn(BH_4)_2$ is unique because of a) the coordination ability of Zn^{2+} , b) it's solubility in aprotic solvents such as THF, Et_2O and DME, c) an efficient chemo-, regio- and stereoselective reducing agent. So, it's using and application is interesting in organic synthesis¹⁻².

Several Combination reducing systems of $Zn(BH_4)_2$ such as $Zn(BH_4)_2/TMEDA^{3a}$, $Zn(BH_4)_2/$ Me₃SiCl^{3b}, $Zn(BH_4)_2/TFA/DME^{3c}$, $Zn(BH_4)_2/H_2O^{3d}$, $Zn(BH_4)_2/Al_2O_3^{3e}$, $Zn(BH_4)_2/C$ ^{3f}, $Zn(BH_4)_2/2NaCl^{3g}$, $Zn(BH_4)_2/U.S.^{3h}$, and $Zn(BH_4)_2/ZrCl_4^{3i}$ are interesting and have been used for different reduction purposes. However, zinc tetrahydroborate has been used less than regular reducing agents in laboratory, probably because of a) non-availability as a commercial reagent b) being freshly prepared. So, $Zn(BH_4)_2$, has been modified as stable complexes such as $[Zn(BH_4)_2(dabco)]^4$, $[Zn(BH_4)_2(pyz)]_n^5$, $[Zn(BH_4)_2(PPh_3)] \&[Zn(BH_4)_2(PPh_3)_2]^6$, $[Zn(BH_4)_2(bpy)]^7$, $[Zn(BH_4)_2(py)]^8$, $[Zn(BH_4)_2XP_4]^9$, $[Zn(BH_4)_2(nmi)]^{10a}$, $[Zn(BH_4)_2(nic)]^{10b}$ and $[Zn(BH_4)_2(caf)]^{10c}$.

In continuation of our interest for preparation of new modified tetrahydroborates, we have prepareda new stable ligand-zinc tetrahydroborate*i.e.* (acridine) (tetrahydroborato) zinc complex; [Zn(BH₄)₂(acr)]. Also, in this context,we have investigated the ability of [Zn(BH₄)₂(acr)] for the reduction of carbonyl compounds such as aldehydes, ketones,acyloins, a-diketones to their corresponding alcohols.

RESULTS AND DISCUSSIONS

We examined the reduction of benzaldehyde as a model reaction. Among the tested different solvents benzaldehyde reduction was better in CH₃CN. Our experiments showed that using 0.5 molar equivalents of $[Zn(BH_4)_2(acr)]$ in CH₃CN (3 mL) is the best conditions. Then, $[Zn(BH_4)_2(acr)]$ has been used for reduce of different aldehydes under optimized reaction conditions (Table 1, entries 1-9). All reduction reactions were completed within 30-60 min by 0.5 molar equivalents of $[Zn(BH_4)_2(acr)]$ in excellent yields of products(92-95%).

Our next attempt was the reduction of ketones. We optimized the reaction conditions with acetophenone as model compound. The reduction of ketones require a higher molar amounts of $[Zn(BH_4)_2(acr)]$ because the reactivity of ketones is lower than aldehydes. The reduction reactions were carried out with 1 molar equivalents of $[Zn(BH_4)_2(acr)]$ at reflux conditions in CH_3CN . All reductions were completed within 80-120 min with high to excellent yields of products (85-93%) as shown in Table 1 (entries 10-17).

We also investigated the potential of the 1,2-reduction of α , β -unsaturated aldehydes and ketones with $[Zn(BH_4)_2(acr)]$. The reduction of cinnamaldehyde with 0.5 molar equivalents of the [Zn(BH₄)₂(acr)] exclusivity afforded the 1,2-reduction product after 40 min at room temperature in CH₃CN. In this reaction, cinnamyl alcohol was obtained in 95% yield (Table 1, entry 18). Under this protocol, reduction of conjugated ketones such as benzylidenacetone (Table 1, entry 19) and chalcone (Table 1, entry 20) were achieved efficiently with 1 molar equivalents of [Zn(BH₄)₂(acr)] at reflux conditions in CH₂CN in excellent yields (95-96%). The efficiency of [Zn(BH₄)₂(acr)] has been compared with other reported reducing systems (Table 2). In all cases[Zn(BH,),(acr)] has a good potential for the reduction of organic carbonyl compounds.

EXPERIMENTAL

All substrates and reagents were purchased from commercially sources with the best quality and used without further purification. IR and ¹H NMR spectra were recorded on PerkinElmer FT-IR RXI and 300 MHz Bruker spectrometers, respectively. The products were characterized by their ¹H NMR or IR spectra and comparison with authentic samples (melting or boiling points). Organic layers were dried over anhydrous sodium sulfate. All yields referred to isolated pure products. ¹H NMR &TLC was applied for the purity determination of substrates, products and reaction monitoring over silica gel 60 F₂₅₄ aluminum sheet.

Preparation of (Acridine)(tetrahydroborato)zinc Complex;[Zn(BH₄)₂(acr)]

An ethereal solution of $Zn(BH_4)_2$ (0.16 M, 250 mL) was prepared from $ZnCI_4(5.452 \text{ g}, 0.04 \text{ mol})$ and NaBH₄ (3.177 g, 0.084 mol)according to an available procedure in the literature¹⁰. Then, acridine (7.17 g, 0.04 mol) in ether (50 mL) was added dropwise to the ethereal solution of $Zn(BH_4)_2$ and stirred for 30 min. Evaporation of the solvent under vacuum at room temperature gave [Zn(BH₄)₂(acr)] as a withe powder in a quantitative yield (10.08 g, 92%). Found: Zn: 23.2 %, B: 7.3 %. Calculated for C₁₃H₁₇B₂NZn, Zn: 23.84 %, B: 7.88%. Scheme 1.

Scheme 1: (Acridine)(tetrahydroborate) zinc complex

Reduction of Acetophenone to 1-phenylethanol with [Zn(BH₄)₂(acr)], A Typical Procedure

In a round-bottomed flask (10 mL), equipped with a magnetic stirrer, a solution of acetophenone (0.120 g, 1mmol) in CH₃CN (3 mL) was prepared. The complex reducing agent (0.274 g, 1mmol) was then added as a solid and the mixture was stirred at reflux conditions. TLC monitored the progress of the reaction (eluent; CCI₄/Et₂O : 5/2).

ntriy	S S S S S S S S S S S S S S S S S S S
ıs (ei	n CH
yloir	ent i
), Ac	g Ag
15-16	ncin
les (1	Red
cetor)] as
a-dil	acr
-14),	BH₄)
es 10	[Zn(I
entrie	with
es (e	lols
(etor	Alcor
-9), I	ing /
ries 1	puoc
(enti	rresp
ydes	ir Co
Ideh	thei
asA	20) tc
such	18-
spu	ntrie
nodu	ls (er
I Cor	punc
bony	omp
f Carl	N C
ety o	arbor
Vari	ed ca
n of a	urat
uctio	Insat
Redu	α, β-ι
le 1:	and
Tab	17)

Entry	Substrate	Product		Molar Ratio	
			Substrate/ [Zn(BH₄)₂(acr)]	Time/ min	Yield°/ %
a	benzaldehyde	benzyl alcohol	1:0.5	30	95
2^a	4-chlorobenzaldehyde	4-chlorobenzyl alcohol	1:0.5	30	92
3^{a}	4-bromobenzaldehyde	4-bromobenzyl alcohol	1:0.5	30	95
4 <i>ª</i>	2,4-dichlorobenzaldehyde	2,4-dichlorobenzyl alcohol	1:0.5	30	94
5 <i>ª</i>	4-methylbenzaldehyde	4-methylbenzyl alcohol	1:0.5	50	95
6 <i>ª</i>	4-methoxybenzaldehyde	4-methoxybenzyl alcohol	1:0.5	60	92
7 <i>ª</i>	2-methoxybenzaldehyde	2-methoxybenzyl alcohol	1:0.5	60	94
8 <i>ª</i>	3-methylbenzaldehyde	3-methylbenzyl alcohol	1:0.5	60	95
9 <i>ª</i>	4-nitrobenzaldehyde	4-nitrobenzyl alcohol	1:0.5	30	92
10 ^b	acetophenone	1-phenylethanol	1:1	06	93
11 ^b	benzophenone	diphenylmethanol	1:1	120	06
12 ^b	9 <i>H</i> -fluoren-9-one	9 <i>H</i> -fluoren-9-ol	1:1	120	91
13 ^b	cyclohexanone	cyclohexanol	1:1	80	06
14 ^b	4-phenylcyclohexanone	4-phenylcyclohexanol	1:1	80	85
15 ^b	benzil	1,2-diphenyl ethane-1,2-diol	1:1	80	06
16 ^b	1,2-bis(4-methoxyphenyl) ethane-1,2-dione	1,2-bis(4-methoxyphenyl) ethane-1,2-diol	1:1	80	06
17 ^b	benzoin	1,2-diphenyl ethane-1,2-diol	1:1	06	06
18ª	cinnamaldehyde	3-phenyl-2-propen-1-ol	1:1	40	95
19 ^b	benzylideneacetone	Phenyl-3-butene-2-ol	1:1	06	06
20 ^b	chalcone	4-phenyl-3-butene-2-ol	1:1	120	92
a The re	actions have been carried out at room temperature. b Th	e reactions have been carried out under reflux conc	ditions. ⁶ Yields refer to	isolated pure	products.

2397

Entry	Reducing Systems		Mol	ar Ratio (Reagent./	Substrate), Time/h		
		Benzaldehyde	Acetophenone	Benzophenone	Cyclohexanone	9 <i>H</i> -fluoren-9-one	Benzoin
-	[Zn(BH ₄) ₂ (acr)]	0.5, 0.5	1, 1.5	1, 2	1, 1.3	1,2	1, 1.5
2 ^{10c}	[Zn(BH ₄) ₂ (caf)]	0.5, 0.5	1,1	1, 1.5	1, 0.5	1,1.5	1, 1
3⁴	[Zn(BH ₄) ₂ (dabco)]	0.75, 0.7	1.2, 5.4	1.5, 8.5		1.5, 2.3	1, 0.17
45	[Zn(BH ₄) ₅ (Ph ₃ P)]		2, 1.25		2, 1	2, 0.5	·
57	[Zn(BH ₄) ₂ (bpy)]	0.25, 0.2	0.35, 0.17	1, 0.75	0.5, 0.15	1, 1.5	0.5, 0.08
6 ⁸	[Zn(BH ₄) ₂ (py)]	1, 0.5	2,2	2, 4.3	2,2	2, 5.3	0.5, 0.5
75	[Zn(BH ₄) ₂ (pyz) _n]	1, 2.5	4, 30		4, 18		3, 5
8 ^{10a}	[Zn(BH ₄) ₂ (nmi)]	1, <i>Im</i>	1, <i>Im</i>		1, 1	1.6, 18	·
9 ^{10b}	[Zn(BH ₄) ₂ (nic)]	1, 0.25	2, 0.8	2, 21.5			·
109	$[Zn(BH_4)_2 XP_4]$	1, 8	2, 15	2, 48	2, 24		

S
D,
ge
Ă
g
- <u>;</u>
ň
eq
£
ő
ŧ
8
Sel
Ľ.
Je
đ
Ļ
<u>ki</u> t
ź
ົບ
Τ
S
Е.
Ĺ.
ប្ត
2(8
([↓]
亩
ŭ
N
Š
s
ĕ
ō
et
X
ŭ
a
es
Ъ
ĥ
ğ
Ā
of
Ę
E:
P P
ğ
Re
e
ţ
of
Ę
sc
ari
ğ
ũ
ŏ
ä
e
ld
Ê

2398

After completion of the reaction in 90 min, a solution of 5% HCl (5 mL) was added to the reaction mixture and stirred for 10 min. The mixture was extracted with CH_2Cl_2 (3 × 10 mL) and dried over the anhydrous sodium sulfate. Evaporation of the solvent and short column chromatography of the resulting crude material over silica gel by eluent of CCl_4/Et_2O : 5/2 afforded the pure liquid benzyl alcohol (0.113 g, 93% yield).

CONCLUSION

In this context, we have shown that $[Zn(BH_4)_2(acr)]$ reduces a variety of carbonyl compounds to their corresponding alcohols in high to excellent yields. Reduction reactions were carried

- 1. Narasimhan, S.; Balakumar, R. *Aldrichim. Acta.* **1998**,*31*, 19-26.
- (a) Ranu, B. C. Synlett 1993, 885-892.
 (b) Ranu, B. C.; Chakraborty, R. Tetrahedron Lett. 1990, 31, 7663-7664.
 (c) Sarkar, D. C.; Das, A. R.; Ranu, B. C.J. Org. Chem. 1990, 55, 5799-5801.
- (a) Kotsuki, H.; Ushio, Y.; Yoshimura, N.; Ochi, M. Bull. Chem. Soc. Jpn. 1988, 61, 2684-2686.

(b) Kotsuki, H.; Ushio, Y.; Yoshimura, N.; Ochi, M. *J. Org. Chem.* **1987**, *52*, 2594-2596.

(c) Ranu, B. C.; Das, A. R. *J. Chem. Soc. Perkin Trans.* **1 1992**, 1561-1562.

(d) Setamdideh, D.; Khezri, B.; Rahmatollahzadeh, M.; Aliporamjad, A. *Asian J. Chem.***2012**, *8*, 3591-3596.

(e) Setamdideh, D.; Khezri, B.; Rahmatollahzadeh, M.; *J. Serb. Chem. Soc.* **2013**, *78*, 1-13.

(f) Setamdideh, D.; Rahmatollahzadeh, M. *J. Mex.Chem. Soc.* **2012**, *56*, 169-175.

(g) Setamdideh. D.; Khaledi, L. *S. Afr. J. Chem.***2013**, *66*, 150–157.(h) Fanari, S.;Setamdideh. D.; *Orient. J. Chem.*, **2014**, *30*, 695-697.

out with 0.5-1 molar equivalents of $[Zn(BH_4)_2(acr)]$ at room temperature and reflux conditions in CH_3CN without any other additive. In addition, regioselectivity of this system was also investigated with exclusive 1,2-reduction of conjugated carbonyl compounds to their corresponding allylic alcohols in high to excellent yields. Reduction of acyloins and β -diketones by this reducing system also produced the corresponding vicinal diols.

ACKNOWLEDGMENTS

The authors gratefully acknowledge financial assistance by the research council of the Islamic Azad University branch of Mahabad.

REFERENCES

(i) Rasol, F.;Setamdideh. D.; *Orient. J. Chem.,* **2013**, *29*, 497-499.

- 4. Firouzabadi, H.;Adibi, M.;Zeynizadeh, B. Synth. Commun.1988, 28,1257-1273.
- 5. Tamami, B.;Lakouraj, M. M.*Synth. Commun.***1995**, *25*, 3089-3096.
- 6. Firouzabadi, H.; Adibi, M. *Phosphorus Sulfur Silicon Relat. Elem.* **1998**, *142*, 125-147.
- Zeynizadeh, B.Bull. Chem. Soc. Jpn. 2003,76, 317-326.
- 8. (a) Zeynizadeh, B.;Faraji, F.*Bull. Korean Chem. Soc.*2003, *24*, 453-459.
 (b) Zeynizadeh, B.;Zahmatkesh, K.*J. Chin. Chem. Soc.*2003, *50*, 267-271.
 (c) Zeynizadeh, B.;Zahmatkesh, K.*J. Chin. Chem. Soc.*2004, *51*, 801-806.
 (d) Zeynizadeh, B.;Zahmatkesh, K.*J. Chin. Chem. Soc.*2005, *52*, 109-112.
- 9. Firouzabadi, H.; Tamami, B.; Goudarzian, N.Synth. Commun.1991,21, 2275-2285.
- 10. (a) Zeynizadeh, B.; Setamdideh, D. Asian J. Chem. 2009, 21, 3603-3610.
 (b) Setamdideh, D.;Rafig, M.E-J. Chem.2012, 9, 2338-2345.
 (c) Abdollahpour, F.; Setamdideh, D. Orient. J. Chem. 2015, 31, in press.