(Acridine)(tetrahydroborato)zinc Complex [$\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}(\mathrm{acr})$]: A New Stable and Efficient Reducing Agent

SINA MOHAMMADI and DAVOOD SETAMDIDEH*
Department of Chemistry, Mahabad Branch, Islamic Azad University, Mahabad, Iran.
*E-mail: davood.setamdideh @gmail.com; d.setamdideh@iau-mahabad.ac.ir

http://dx.doi.org/10.13005/ojc/310470
(Received: August 01, 2015; Accepted: September 18, 2015)

Abstract

(Acridine)(tetrahydroborato)zinc complex[$\left.\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}(\mathrm{acr})\right]$ has been prepared by complexation of oneequimolar amounts of zinc tetrahydroborate and one equimolar amounts of acridine at room temperatureas gray stable reducing agents. Also, $\left[\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}(\mathrm{acr})\right]$ has been used for reduce of different carbonyl compounds such as aldehydes, ketones, α, β-unsaturated carbonyl compounds, acyloins and a-diketones to their corresponding alcohols in excellent yields (85$95 \%$). The reduction reactions have been carried outwithin $30-120$ min by using of $0.5-1$ equivalents of $\left[\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}(\mathrm{acr})\right]$ in $\mathrm{CH}_{3} \mathrm{CN}$ at room temperature or under reflux conditions.

Key words: $\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}$, Acridine, Reduction, Carbonyl Compounds.

INTRODUCTION

$\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}$ is unique because of a) the coordination ability of Zn^{2+}, b) it’ssolubility in aprotic solventssuch as THF, $\mathrm{Et}_{2} \mathrm{O}$ and DME, c) an efficient chemo-, regio- and stereoselective reducing agent.So,it's using and application is interesting in organic synthesis ${ }^{1-2}$.

Several Combination reducing systems of $\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}$ such as $\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2} /$ TMEDA ${ }^{3 \mathrm{a}}$, $\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2} /$ $\mathrm{Me}_{3} \mathrm{SiCl}^{3 \mathrm{~b}}, \mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2} / \mathrm{TFA} / \mathrm{DME}^{3 \mathrm{c}}, \mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2} / \mathrm{H}_{2} \mathrm{O}^{3 \mathrm{~d}}$, $\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2} / \mathrm{Al}_{2} \mathrm{O}_{3}{ }^{3 \mathrm{e}}, \mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2} / \mathrm{C}^{3 f}, \mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2} / 2 \mathrm{NaCl}^{39}$, $\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2} / \mathrm{U} . \mathrm{S} .{ }^{3 \mathrm{~h}}$, and $\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2} / \mathrm{ZrCl}_{4}{ }^{3 i}$ are interesting and have been used for different reduction purposes.However, zinc tetrahydroborate has been used less than regular reducing agents in laboratory, probably because of a) non-availability
as a commercial reagent b) being freshly prepared. So, $\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}$, has been modified as stable complexes such as $\left[\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}(\text { dabco })\right]^{4}$, $\left[\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}(\mathrm{pyz})\right]_{n}^{5},\left[\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}\left(\mathrm{PPh}_{3}\right)\right] \&\left[\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}\right.$ $\left.\left(\mathrm{PPh}_{3}\right)_{2}\right]^{6}, \quad\left[\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}(\mathrm{bpy})\right]^{7}, \quad\left[\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}(\mathrm{py})\right]^{8}$, $\left[\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2} \mathrm{XP}_{4}\right]^{9},\left[\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}(\mathrm{nmi})\right]^{10 \mathrm{a}},\left[\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}(\mathrm{nic})\right]^{10 \mathrm{~b}}$ and $\left[\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}(\mathrm{caf})\right]^{10 \mathrm{c}}$.

In continuation of our interest for preparation of new modified tetrahydroborates, we have prepareda new stable ligand-zinc tetrahydroboratei.e. (acridine) (tetrahydroborato) zinc complex; $\left[\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}(\mathrm{acr})\right]$. Also, in this context, we have investigated the ability of $\left[\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}(\mathrm{acr})\right]$ for the reduction of carbonyl compounds such as aldehydes, ketones,acyloins, a-diketones to their corresponding alcohols.

RESULTS AND DISCUSSIONS

We examined the reduction of benzaldehyde as a model reaction. Among the tested different solvents benzaldehyde reduction was better in $\mathrm{CH}_{3} \mathrm{CN}$. Our experiments showed that using 0.5 molar equivalents of $\left[\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}(\mathrm{acr})\right]$ in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ is the best conditions. Then, $\left[\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}(\mathrm{acr})\right]$ has been used for reduce of different aldehydes under optimized reaction conditions (Table 1, entries 1-9). All reduction reactions were completed within $30-60 \mathrm{~min}$ by 0.5 molar equivalents of $\left[\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}(\mathrm{acr})\right]$ in excellent yields of products(92-95\%).

Our next attempt was the reduction of ketones. We optimized the reaction conditions with acetophenone as model compound. The reduction of ketones require a higher molar amounts of $\left[\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}(\mathrm{acr})\right]$ because the reactivity of ketones is lower than aldehydes. The reduction reactions were carried out with 1 molar equivalents of $\left[\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}(\mathrm{acr})\right]$ at reflux conditions in $\mathrm{CH}_{3} \mathrm{CN}$. All reductions were completed within 80-120 min with high to excellent yields of products (85-93\%) as shown in Table 1 (entries 10-17).

We also investigated the potential of the 1,2-reduction of α, β-unsaturated aldehydes and ketones with $\left[\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}(\right.$ acr $\left.)\right]$. The reduction of cinnamaldehyde with 0.5 molar equivalents of the $\left[\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}(\mathrm{acr})\right]$ exclusivity afforded the 1,2-reduction product after 40 min at room temperature in $\mathrm{CH}_{3} \mathrm{CN}$. In this reaction, cinnamyl alcohol was obtained in 95% yield (Table 1, entry 18). Under this protocol, reduction of conjugated ketones such as benzylidenacetone (Table 1, entry 19) and chalcone (Table 1, entry 20) were achieved efficiently with 1 molar equivalents of $\left[\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}(\mathrm{acr})\right]$ at reflux conditions in $\mathrm{CH}_{3} \mathrm{CN}$ in excellent yields (95-96\%). The efficiency of $\left[\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}(\mathrm{acr})\right]$ has been compared with other reported reducing systems (Table 2). In all cases $\left[\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}(\mathrm{acr})\right]$ has a good potential for the reduction of organic carbonyl compounds.

EXPERIMENTAL

All substrates and reagents were purchased from commercially sources with the best quality and used without further purification. IR and
${ }^{1} \mathrm{H}$ NMR spectra were recorded on PerkinElmer FTIR RXI and 300 MHz Bruker spectrometers, respectively. The products were characterized by their ${ }^{1} \mathrm{H}$ NMR or IR spectra and comparison with authentic samples (melting or boiling points). Organic layers were dried over anhydrous sodium sulfate. All yields referred to isolated pure products. ${ }^{1} \mathrm{H}$ NMR \&TLC was applied for the purity determination of substrates, products and reaction monitoring over silica gel $60 \mathrm{~F}_{254}$ aluminum sheet.

Preparation of (Acridine)(tetrahydroborato)zinc Complex;[Zn(BH $)_{2}($ acr $\left.)\right]$

An ethereal solution of $\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}(0.16 \mathrm{M}$, 250 mL) was prepared from $\mathrm{ZnCl}_{4}(5.452 \mathrm{~g}, 0.04$ $\mathrm{mol})$ and $\mathrm{NaBH}_{4}(3.177 \mathrm{~g}, 0.084 \mathrm{~mol})$ according to an available procedure in the literature ${ }^{10}$. Then, acridine ($7.17 \mathrm{~g}, 0.04 \mathrm{~mol}$) in ether (50 mL) was added dropwise to the ethereal solution of $\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}$ and stirred for 30 min . Evaporation of the solvent under vacuum at room temperature gave $\left[\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}(\mathrm{acr})\right]$ as a withe powder in a quantitative yield (10.08 g, 92\%). Found: Zn: 23.2 \%, B: 7.3 \%. Calculated for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~B}_{2} \mathrm{NZn}, \mathrm{Zn}: 23.84$ \%, B: 7.88\%. Scheme 1.

Scheme 1: (Acridine)(tetrahydroborate) zinc complex

Reduction of Acetophenone to 1-phenylethanol with $\left[\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}(\mathrm{acr})\right]$, A Typical Procedure

In a round-bottomed flask (10 mL), equipped with a magnetic stirrer, a solution of acetophenone ($0.120 \mathrm{~g}, 1 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ was prepared. The complex reducing agent (0.274 $\mathrm{g}, 1 \mathrm{mmol}$) was then added as a solid and the mixture was stirred at reflux conditions. TLC monitored the progress of the reaction (eluent; $\mathrm{CCl}_{4} / \mathrm{Et}_{2} \mathrm{O}: 5 / 2$).
Table 1: Reduction of a Variety of Carbonyl Compounds such as Aldehydes (entries 1-9), Ketones (entries 10-14), a-diketones (15-16), Acyloins (entriy
17) and α, β-unsaturated carbonyl Compounds (entries $18-20$) to their Corresponding Alcohols with [$\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}($ acr $)$ as Reducing Agent in $\mathrm{CH} \mathrm{H}_{3} \mathrm{CN}$

Entry	Substrate	Product	Molar Ratio		
			$\begin{gathered} \text { Substrate/ } \\ {\left[\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}(\mathrm{acr})\right]} \end{gathered}$	Time/ min	Yield $/$ \%
$1^{\text {a }}$	benzaldehyde	benzyl alcohol	1:0.5	30	95
$2^{\text {a }}$	4-chlorobenzaldehyde	4-chlorobenzyl alcohol	1:0.5	30	92
$3^{\text {a }}$	4-bromobenzaldehyde	4-bromobenzyl alcohol	1:0.5	30	95
4^{a}	2,4-dichlorobenzaldehyde	2,4-dichlorobenzyl alcohol	1:0.5	30	94
$5^{\text {a }}$	4-methylbenzaldehyde	4-methylbenzyl alcohol	1:0.5	50	95
6^{a}	4-methoxybenzaldehyde	4-methoxybenzyl alcohol	1:0.5	60	92
7^{a}	2-methoxybenzaldehyde	2-methoxybenzyl alcohol	1:0.5	60	94
8^{a}	3-methylbenzaldehyde	3-methylbenzyl alcohol	1:0.5	60	95
9^{a}	4-nitrobenzaldehyde	4-nitrobenzyl alcohol	1:0.5	30	92
$10^{\text {b }}$	acetophenone	1-phenylethanol	1:1	90	93
$11^{\text {b }}$	benzophenone	diphenylmethanol	1:1	120	90
$12^{\text {b }}$	9H-fluoren-9-one	9H-fluoren-9-ol	1:1	120	91
$13^{\text {b }}$	cyclohexanone	cyclohexanol	1:1	80	90
$14^{\text {b }}$	4-phenylcyclohexanone	4-phenylcyclohexanol	1:1	80	85
$15^{\text {b }}$	benzil	1,2-diphenyl ethane-1,2-diol	1:1	80	90
$16^{\text {b }}$	1,2-bis(4-methoxyphenyl) ethane-1,2-dione	1,2-bis(4-methoxyphenyl) ethane-1,2-diol	1:1	80	90
$17^{\text {b }}$	benzoin	1,2-diphenyl ethane-1,2-diol	1:1	90	90
$18^{\text {a }}$	cinnamaldehyde	3-phenyl-2-propen-1-ol	1:1	40	95
$19^{\text {b }}$	benzylideneacetone	Phenyl-3-butene-2-ol	1:1	90	90
20^{6}	chalcone	4-phenyl-3-butene-2-ol	1:1	120	92

${ }^{a}$ The reactions have been carried out at room temperature. ${ }^{b}$ The reactions have been carried out under reflux conditions. ${ }^{c}$ Yields refer to isolated pure products.
Table 2: Comparison of the Reduction of Aldehydes and Ketones by $\left[\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}(\mathrm{acr})\right]$ in $\mathrm{CH}_{3} \mathrm{CN}$ with other Reported Reducing Agents

Entry	Reducing Systems	Molar Ratio (Reagent./Substrate), Time/h					
		Benzaldehyde	Acetophenone	Benzophenone	Cyclohexanone	9H-fluoren-9-one	Benzoin
1	$\left[\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}(\mathrm{acr})\right]$	0.5, 0.5	1, 1.5	1, 2	1, 1.3	1, 2	1, 1.5
$2^{10 \mathrm{c}}$	$\left[\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}(\mathrm{caf})\right]$	0.5, 0.5	1,1	1, 1.5	1, 0.5	1,1.5	1,1
$3{ }^{4}$	[$\left.\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}(\mathrm{dabco})\right]$	0.75, 0.7	1.2, 5.4	1.5, 8.5	-	1.5, 2.3	1, 0.17
4^{5}	$\left[\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}\left(\mathrm{Ph}_{3} \mathrm{P}\right)\right]$	-	2, 1.25	-	2, 1	2, 0.5	-
5^{7}	[$\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}(\mathrm{bpy})$]	0.25, 0.2	0.35, 0.17	1, 0.75	0.5, 0.15	1, 1.5	0.5, 0.08
6^{8}	$\left[\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}(\mathrm{py})\right]$	1, 0.5	2, 2	2, 4.3	2, 2	2, 5.3	0.5, 0.5
7^{5}	[$\left.\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}(\mathrm{pyz})_{\mathrm{n}}\right]$	1,2.5	4,30	-	4, 18	-	3, 5
$8^{10 a}$	$\left[\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}(\mathrm{nmi})\right]$	1, Im	1, Im	-	1, 1	1.6, 18	-
$9^{10 \mathrm{~b}}$	[$\left.\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}(\mathrm{nic})\right]$	1, 0.25	2, 0.8	2, 21.5	-	-	-
109	$\left[\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2} \mathrm{XP}_{4}\right]$	1,8	2, 15	2, 48	2, 24	-	-

After completion of the reaction in 90 min , a solution of $5 \% \mathrm{HCl}(5 \mathrm{~mL})$ was added to the reaction mixture and stirred for 10 min . The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$ and dried over the anhydrous sodium sulfate. Evaporation of the solvent and short column chromatography of the resulting crude material over silica gel by eluent of $\mathrm{CCl}_{4} / \mathrm{Et}_{2} \mathrm{O}: 5 / 2$ afforded the pure liquid benzyl alcohol ($0.113 \mathrm{~g}, 93 \%$ yield).

CONCLUSION

In this context, we have shown that $\left[\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}(\mathrm{acr})\right]$ reduces a variety of carbonyl compounds to their corresponding alcohols in high to excellent yields. Reduction reactions were carried
out with $0.5-1$ molar equivalents of $\left[\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}(\mathrm{acr})\right]$ at room temperature and reflux conditions in $\mathrm{CH}_{3} \mathrm{CN}$ without any other additive. In addition, regioselectivity of this system was also investigated with exclusive 1,2-reduction of conjugated carbonyl compounds to their corresponding allylic alcohols in high to excellent yields. Reduction of acyloins and β-diketones by this reducing system also produced the corresponding vicinal diols.

ACKNOWLEDGMENTS

The authors gratefully acknowledge financial assistance by the research council of the Islamic Azad University branch of Mahabad.

REFERENCES

1. Narasimhan, S.; Balakumar, R. Aldrichim. Acta. 1998,31, 19-26.
2. (a) Ranu, B. C. Synlett 1993, 885-892.
(b) Ranu, B. C.; Chakraborty, R. Tetrahedron Lett. 1990, 31, 7663-7664.
(c) Sarkar, D. C.; Das, A. R.;Ranu, B. C.J. Org. Chem. 1990, 55, 5799-5801.
3. (a) Kotsuki, H.; Ushio, Y.; Yoshimura, N.; Ochi, M. Bull. Chem. Soc. Jpn. 1988,61, 26842686.
(b) Kotsuki, H.; Ushio, Y.; Yoshimura, N.; Ochi, M. J. Org. Chem. 1987, 52, 2594-2596.
(c) Ranu, B. C.; Das, A. R. J. Chem. Soc. Perkin Trans. 1 1992, 1561-1562.
(d) Setamdideh, D.; Khezri, B.; Rahmatollahzadeh, M.; Aliporamjad, A. Asian J. Chem.2012, 8, 3591-3596.
(e) Setamdideh, D.; Khezri, B.; Rahmatollahzadeh, M.; J. Serb. Chem. Soc. 2013, 78, 1-13.
(f) Setamdideh, D.; Rahmatollahzadeh, M. J. Mex.Chem. Soc. 2012, 56, 169-175.
(g) Setamdideh. D.; Khaledi, L. S. Afr. J. Chem.2013, 66, 150-157.(h) Fanari, S.;Setamdideh. D.; Orient. J. Chem., 2014, 30, 695-697.
(i) Rasol, F.;Setamdideh. D.; Orient. J. Chem., 2013, 29, 497-499.
4. Firouzabadi, H.;Adibi, M.;Zeynizadeh, B. Synth. Commun.1988, 28,1257-1273.
5. Tamami, B.;Lakouraj, M. M.Synth. Commun.1995, 25, 3089-3096.
6. Firouzabadi, H.; Adibi, M. Phosphorus Sulfur Silicon Relat. Elem. 1998, 142, 125-147.
7. Zeynizadeh, B.Bull. Chem. Soc. Jpn. 2003,76, 317-326.
8. (a) Zeynizadeh, B.;Faraji, F.Bull. Korean Chem. Soc.2003, 24, 453-459.
(b) Zeynizadeh, B.;Zahmatkesh, K.J. Chin. Chem. Soc.2003, 50, 267-271.
(c) Zeynizadeh, B.;Zahmatkesh, K.J. Chin. Chem. Soc.2004, 51, 801-806.
(d) Zeynizadeh, B.;Zahmatkesh, K.J. Chin. Chem. Soc.2005, 52, 109-112.
9. Firouzabadi, H.; Tamami, B.; Goudarzian, N. Synth. Commun.1991,21, 2275-2285.
10. (a) Zeynizadeh, B.; Setamdideh, D. Asian J. Chem. 2009, 21, 3603-3610.
(b) Setamdideh, D.;Rafig, M.E-J. Chem.2012, 9, 2338-2345.
(c) Abdollahpour, F.; Setamdideh, D. Orient. J. Chem. 2015, 31, in press.
