
INTRODUCTION

The most common physicochemical
descriptor is the molecule’s partition coefficient in
an octanol/water system. As emphasized previously,
the drug will go through a series of partitioning
steps: (a) leaving the aqueous extracellular fluids,
(b) passing through lipid membranes, and (c)
entering other aqueous environments before
reaching the receptor. In this sense, a drug is
undergoing the same partitioning phenomenon that
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ABSTRACT

Quantitative structure-property relationship (QSPR) for estimating the distribution
coefficients (logD7.4) of 300 diverse drugs developed using sub-structural molecular fragments
(SMF) method. Forward and backwards stepwise regression variable selection and multi-linear
regression (MLR) combined to describe the effect of molecular graph on the logD7.4 according to
the QSPR method. Finally, a QSPR model is selected based on leave-one-out cross-validation
and its prediction ability is further tested on 50 representative compounds excluded from model
calibration. The prediction results from the MLR model are in good agreement with the experimental
values. The predictive power and robustness of the QSPR model were characterized by the
statistical validation.
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happens to any chemical in a separatory funnel
containing water and a nonpolar solvent such as
hexane, chloroform, or ether. The par tition
coefficient (P) is the ratio of the molar concentration
of chemical in the non-aqueous phase (usually 1-
octanol) versus that in the aqueous phase (Eq. 1).
For reasons already discussed, it is more common
to use the logarithmic expression (Eq. 2).= [ ℎ ][ ℎ ]    

...(1)
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...(2)

The difference between the separatory
funnel model and what actually occurs in the body,
is that the partitioning in the funnel will reach an
equilibrium at which the rate of chemical leaving
the aqueous phase and entering the organic phase
will equal the rate of the chemical moving from the
organic phase to the aqueous phase. This is not the
physiological situation. The absorption of drugs is
very important in rational drug design. Indeed, drugs
have to cross a series of barriers either by a passive
diffusion or by a carrier-mediated uptake. The 1-
octanol/water partition coefficient, logP, is accepted
as one of the principal parameters to evaluate
lipophilicity of chemical compounds that, to a large
degree, determines these pharmacokinetic
properties of drugs. Note that dynamic changes are
occurring to the drug, such as it being metabolized,
bound to serum albumin, excreted from the body,
and bound to receptors. The environment for the
drug is not static. Upon administration, the drug will
be pushed through the membranes because of the
high concentration of drug in the extracellular fluids
relative to the concentration in the intracellular
compartments. In an attempt to maintain equilibrium
ratios, the flow of the drug will be from systemic
circulation through the membranes onto the
receptors. As the drug is metabolized and excreted
from the body, it will be pulled back across the
membranes, and the concentration of drug at the
receptors will decrease. Equations 1 and 2 assume
that the drug is in the non-polar state. A large
percentage of drugs are amines whose pKa is such
that at physiological pH=7.4, a significant
percentage of the drug will be in its protonated,
ionized form. A similar statement can be made for
the HA acids (carboxyl, sulfonamide, imide) in that
at physiological pH, a significant percentage will
be in their anionic forms. An assumption is made
that the ionic form is water-soluble and will remain
in the water phase of an octanol /water system. This
reality has led to the use of log D, which is defined
as the equilibrium ratio of both the ionized and un-
ionized species of the molecule in an octanol/water
system (Eq. 5).  The percent ionization of a drug is
calculated by using equation 3 for HA acids and
equation 4 for BH+ acids.

...(3)

...(4)

The percent ionization of ionized HA acids
and BH protonated amines can be estimated from
Equations 3 and 4  and the logD from Equations 6
and 7, respectively.

 ...(5)

...(6)

...(7)

Because much of the time the drug’s
movement across membranes is a partitioning
process, the partition coefficient has become the
most common physicochemical property 1-3. It is now
realized that the n-octanol/water system is an
excellent estimator of drug partitioning in biological
systems. The distribution coefficients of organic
compounds calculated using ALOGPS program by
Igor V. Tetko 4,5.

In this article, at first, a quantitative
structure–property relationship model for estimation
of distribution coefficients at pH=7.4 of diverse drug
is developed. These quantitative structure property
relationships (QSPR) are generally used to correlate
the biological, chemical, or physical property of a
compound with its physico-chemical characteristics
6,7.

In our previous papers, we reported on the
application of QSPR techniques in to develop a new,
simplified approach to prediction of compounds
properties 8-13. For the first time, we applied the sub-
structural molecular fragment (SMF) method for
modeling the logD7.4 of diverse drug. The goal of
this study is to develop a SMF method and the related
software tools, to model relationships between the
structure of 300 drugs and their distribution
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coefficients. This method is based on to represent a
molecule by its fragments and on to calculate their
contributions to a given property. It uses two types
of fragments: (i) the sequences of atoms and/or
bonds (atom and/or bond paths up to specified
maximal length) and (ii) “augmented” represented
by a selected atom and/or bonds with its
environment. In fact, it represents an extension of
empirical methods used to calculate physical or
chemical properties of molecules using atomic or
bond increments.

Data and methods
Experimental data

All logD7.4 data for all 300 drugs were taken
from the literature 14.  The logD7.4 of these drugs are
deposited in journal log as supplementary data.
The values were used as dependent variable in
the following analyses and the values ranged from
-6 to 6.1.

Molecular modeling and fragment generation
All calculations were run on a Dell Inspiron

N5010 laptop computer with Intel® Core™ i7
processor with Windows 7 operating system. The
molecular structures of all compounds were drawn
into the HyperChem 8.0 program and pre-optimized
using MM+ molecular mechanics method. The final
geometries of the minimum energy conformation
were obtained by more precise optimization with
the semi-empirical AM1 method, applying a root
mean square gradient limit of 0.01 (Kcal.mol-1. Å-1).
Then, the resulted geometries were put in to ISIDA/
QSPR (version 5.76.003, 2010) to calculate sub-
structural molecular fragments. The ISIDA/QSPR
program realizes the sub-structural molecular
fragments (SMF) method for QSPR/MLRA
modeling. The SMF method is based on the splitting
of molecular graph into fragments, and on the
calculation of their contributions to a given property
(logD7.4).

Computational procedure
Sub-structural molecular fragments

The ISIDA/QSPR program realizes the
sub-structural molecular fragments (SMF) method15-

21. which is based on the splitting of a molecular
graph on fragments (sub-graphs), and on the
calculation of their contributions to a given property
Y. Two classes of fragments are used: “sequences”

(I) and “augmented” (II). Three sub-types AB, A and
B are defined for each class. For the fragments I,
they represent sequences of atoms and bonds (AB),
of atoms only (A), or of bonds only (B). Shortest or
all paths from one atom to the other are used. For
each type of sequences, the minimal (nmin) and
maximal (nmax) number of constituted atoms must
be defined. Thus, for the partitioning I(AB, nmin - nmax),
I(A, nmin - nmax) and I(B, nmin - nmax), the program
generates “intermediate” sequences involving ν
atoms (nmin ≤ n ≤ nmax). In the current version of
ISIDA/QSPR, nmin ≥ 2 and nmax ≤ 15. An “augmented”
represents a selected atom with its environment
including both neighboring atoms and bonds (AB),
or atoms only (A, without taking hybridization of
neighbors into account, or Hy, where hybridization
of neighbors is accounted for), or bonds only (B).

Variable selection procedures
Generally, generated pool of descriptors

is much larger than the number of compounds in
the training set; therefore procedures for selecting
variables should be applied to build statistically
significant multi-linear regressions. In ISIDA, a
combination of forward and backward stepwise
variable selection procedures is used.

Filtering stage
The program eliminates variables Xi which

have small correlation coefficient with the property,
Ry,i < R0

y,i, and those highly correlated with other
variables Xj (Ri,j > R0

i,j), which were already selected
for the model. In this work, the values R0

y,i = 0.001,
…  and R0

i,j = 0.75, … were used.

Forward stepwise pre-selection stage
The suite of forward and backward

stepwise algorithms has been used for variable pre-
selection in ISIDA/QSPR studies by the variable
selection suite (VSS) program. Three algorithms for
forward stepwise variable selection are based on
the calculations of correlation coefficients and
subtractions. This is an iterative procedure, on each
step of which the program selects one Xi (two Xi

and Xj or three variables Xi , Xj and Xk) maximizing
the correlation coefficient Ry,j (Ry,ij or Ry,ijk) between
Xi (Xi and Xj or Xi , Xj and Xk) and dependent variable
Y. At the first step (s = 1), the modeled property for
each compound is taken as its experimental one Ys

= Y. At each next step s, as the property  value Ys is
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used residual Ys = Ys-1 - Ycalc, where Ycalc = c0 + ciXi

(Ycalc = c0 + ciXi + cjXj or Ycalc = c0 + ciXi + cjXj + ckXk)
is calculated property by the one-variable (two- or
three-variables) model with selected variable Xi

(variables Xi and Xj or Xi, Xj and Xk). This loop is
repeated until the number of variables k reaches a
user-defined value; in this work, k was analyzed
from 0.1n to 0.9n, where n is the number of the
molecules in the training set.

Backward stepwise selection stage
The final selection is performed using

backward stepwise variable selection procedure
based on the t statistic criterion. Here, the program
eliminates the variables with low ti = ci/si values,
where si is standard deviation for the coefficient ci

at the i-th variable in the model. First, the program
selects the variable with the smallest t < t0, then it
performs a new fitting excluding that variable. This
procedure is repeated until t ³ t0 for selected
variables or if the number of variables reaches the
user’s defined value. Here, t0, the tabulated value of
Student’s criterion, is a function of the number of
data points, the number of variables, and the
significance level. Default value of the t0 is 1.96, it
can be analyzed from 1.96 to 3.9.

Multi-linear regression model
The modeled physical or chemical

proper ty Y can be quantitatively calculated
accounting for contributions of fragments using
linear (3) fitting equations.

...(8)

where ai is a fragment contributions, Ni is
the number of fragments of i type. The ao term is
fragment independent and Γ  term is external
descriptors (e.g., topological, electronic, etc.) by
default Γ=0. Contributions of ai are calculated by
minimizing a functional

U[ai] = 
1

n

i
i

w
=
∑ (Yexp,i – Ycalc,i)

2 => min ...(9)

where n is the number of the compounds
in the training set, wi the weight accounting for the
accuracy of the experimental data, Yexp and Ycalc are,
respectively, experimental and calculated according
to (3) property values. The equation (3) represents
calculation of property Y by using additive

contributions of fragments. The coefficients of the
equation (3) being optimized at the training stage
are then used to estimate Y values of the compounds
from the test set or to screen external databases of
real or virtual compounds.

Validation of QSPR Models
In ISIDA/QSPR calculations, each initial

data set was split into two sub-sets: training (250
compounds) and test (50 compounds) sets. The
QSPR models were built on the training set followed
by “prediction” calculations for the test set. Before a
QSPR model is used to predict the properties for
new compounds, it should be validated both
internally and externally to ensure that the built
model is robust, reliable, stable and predictive. In
the current work, several statistic terms such as
squared correlation coefficient R2 for the training
set fitness and Q2

ext for the external predictive ability,
leave-one-out (LOO) cross-validated Q2

LOO and root
mean square error (RMSE) were used to assess
the internal and external predictive ability of the
proposed model. The corresponding statistical
parameters were defined as:

Where i represents ith molecule, yie is the
desired output (experimental property),yip the actual
output, yicv is the output of  leave-one-out cross-
validation, ytraining 

mean and y test 
mean are the mean

values of yip for the training and test sets, respectively.
N is the number of compounds in the training or test
set. In addition, the built model was also validated
externally using the test set compounds due to the
fact that the best way to evaluate the predictive ability
of a QSPR model is its validation using compounds
not included in the training set with known
properties.
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RESULTS AND DISCUSSION

The octanol-water distribution coefficient
is a physical property used extensively to describe
a chemical’s lipophilic or hydrophobic properties. It

is the ratio of a chemical’s concentration in the
octanol-phase to its total concentration in the
aqueous-phase of a two-phase system at
equilibr ium. The ISIDA program has been
developed to establish structure-property

Table 1: Set of fragments, Coefficients (Ai) of the equation, standard
deviations for coefficients and their t-Test for log D = A0 + ΣΣΣΣΣ (Ai× Ni)

Variable[i] Contribution (Ai) Standarddeviation (ΔΔΔΔΔA) t-Test

A0 0.71699 0.103 6.91
H-O-C=O -2.09574 0.0801 26.17
C-C=C 0.131227 0.00838 15.66
C-C-C-H 0.028944 0.00212 13.63
H-C-O-H -0.637652 0.0382 16.68
H-N -0.390651 0.0333 11.73
H-O-C-C-C=C-O -1.864208 0.212 8.78
H-C-C-N-C-H -0.038338 0.0039 9.83
C=C-Cl 0.589158 0.0648 9.1
N-C-N-C=N -2.129112 0.221 9.62
H-N-C-C-C-C=C-C-O -1.081628 0.174 6.23
C-N-C-C-N-C-C-C-N 1.371874 0.209 6.57
H-C-C=C-C-N-N -0.987005 0.191 5.17
C-C=N-C-N-C-C-H 0.249995 0.048 5.2
H-C=C-C-S-N-H -1.106389 0.198 5.6
H-C-C=C-N-C-N-C-H -0.690742 0.129 5.34
C=C-C-N-S=O -0.907277 0.147 6.19
C-N=C-N 0.395616 0.0745 5.31
H-C-C-C-C-C-N-C=O 0.687428 0.127 5.4
C-C=C-C=C-C-N-C 0.959077 0.171 5.6
H-N-C=C-C-O 0.716806 0.131 5.46
H-O-C-C-C-C-C-C=O -0.952659 0.227 4.19
H-C-N-C-C-C-C=C-H -0.065865 0.0199 3.31
H-C-C-C-N-C-C-N=C-H -0.450089 0.0879 5.12
C-C-N=N 0.642752 0.139 4.63
H-O-C-C-O-C=C-O -1.32722 0.302 4.39
N=C-C=C-O -0.831721 0.294 2.83
Cl-C=C-O -1.498618 0.363 4.13
H-C-C-C-C=C-C=C-N 0.636188 0.19 3.35
C=C-N-C-C-C-O-H 2.005056 0.352 5.7
H-C-N-C-C=O -0.246307 0.0494 4.99

Table 2. Statistical parameters of QSPR-MLRA model

n R2 and Q2
loo,ext SD RMSE F

All data 300 0.9359 0.475 0.4890 4348
train 250 0.9329 0.492 0.4897 3450
test 50 0.9486 0.481 0.4716
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relationships based on the SMF partitioning. The
program inputs data in the SDF format containing
structural and properties information22. The graphical
interface of ISIDA allows to attribute data to the
learning or to the validation sets and to set up the
parameters of calculations (type of fragments,
minimal and maximal number of atoms/bonds in
the sequences, type of equation). A QSPR is a
mathematical relationship between a property of a
chemical, in this case logD7.4, and molecular
fragments of the chemical. The fragments are
obtained from the structure of the chemical structure.
First, a training set of distribution data is used to
statistically establish the relationship between
logD7.4and the molecular fragments. The QSPR can
then be used to predict the logD7.4 of untested
chemicals for which the fragments are known. Thus,

the fragments selected to describe this process in a
QSPR should be able to describe the relative
affinities of drugs for distribution between n-octanol
and water. To establish relationships between the
structure of drugs and their distribution properties,
we used the recently developed sub-structural
molecular fragments (SMF) method, which is based
on the representation of the molecular graph by
fragments and on the calculation of their
contributions to a given property. The sequences
fragments represent sequences of atoms and
bonds (AB), of atoms only (A), or of bonds only (B).
The length of sequences varies from 2 to 15 atoms.
For any sequence containing from nmin to nmax

atoms, all fragments of nmax, nmax-1, nmax-2,..., nmin length
are considered. In this work, the I(AB, 2-10)
decomposition scheme corresponds to thirty

R² = 0.9495
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Fig. 1: Plot of experimental logD7.4 versus predicted logD7.4 for train and test sets
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sequences containing 10, 9, 8, 7, 6, 5, 4, 3 and 2
atoms and linking bonds are selected. To select the
most relevant fragments to the distribution
coefficients, 13139 fragments calculated by ISIDA
for each compound were used as the inputs for
stepwise regression. The 250 Drugs were selected
for the training set and 50 drugs for the test set. The
optimum subset size was reached when adding
another fragment did not improve the performance
of the model significantly. Through this procedure,
the 30-parameter model was selected as the best
model. It can be described at Table 1. The quality of
a QSPR model is generally expressed by its fitting
ability and prediction ability, and the latter one is
more important. The statistical parameters for the
test set were Q2

ext of 0.9486 and root mean square
error of prediction (RMSE) of 0.4716.

When a compound is split into constitutive
fragments, the fragments contributions to the
distribution coefficients (logD7.4) or to any other
physical or chemical property are calculated using
linear fitting equation:

log D = A0 + Σ (Ai× Ni) ...(14)

Here, Ai is contribution of fragment, and Ni

is the number of fragments of i type. The Ao term is
fragment independent. The fragments contributions
as fitted coefficients in the equation (14) at the
learning stage are used to predict logD7.4 for the
compounds from the validation set. Set of
fragments, coefficients of the equation, standard
deviations for coefficients and their t-test for equation
(14) are shown in Table 1. This shows that the logD7.4

increases with positive  coefficients, and  decreases
logD7.4 with negative coefficients, respectively. On
the other hand, the signs of the coefficients were
used in order to determine the influence of each
variable, positive or negative, on the logD7.4. The
experimental, predicted and residuals data for
training set (250 compounds) and test set (50
compounds)  are shown in supplementary data (see
Figure 1 and 2).  The statistical results of training
and external validation of model are shown in Table
2. In general, molecular fragments correlate well
with physical properties that are dependent on
molecular volume, shape and size as each index
incorporates a summation of terms representing
fragments of the molecules. Thus in the QSPR here,

one sees a general increase in absorbability as
molecular size increase, reflected in increases in
fragments. Thus in a diverse drugs, distribution
increases with increasing chain length data and
Van der Waals forces. In molecular structures that
have ionized functional groups distribution
coefficients decreases, because concentration of
drug increases in water and decreases in octanol.

CONCLUSION

The applicability of ISIDA-QSPR for
developing a logD7.4 was demonstrated using a set
of sub-structural molecular fragments calculated from
molecular structure. In this work, MLR modeling
method was used to study the quantitative structure-
property relationship of logD7.4 for drug set. We can
conclude that: firstly, the prediction results indicate
that the multi-linear regression modeling method can
improve the prediction accuracy significantly for this
large data set; secondly, the models developed in this
work provide an accurate model that can be used to
predict the logD7.4 from the molecular structure only. In
this case the distribution occurs between water and
n-octanol. Distribution of drug between polar and non-
polar solvent mainly involves hydrophilic and
hydrophobic interactions. In this paper, new QSPR
model have been developed for predicting the logD7.4

of a diverse set of drugs from the molecular structure
alone. The obtained results show that MLR method
could model the relationship between logD7.4 and their
sub-structural fragmental. By performing model
validation, it can be concluded that the presented
model is a valid model and can be effectively used to
predict the logD7.4 of drugs with an accuracy
approximating the accuracy of experimental logD7.4

determination. It can be reasonably concluded that
the proposed model would be expected to predict
logD7.4 for new drug for which experimental values
are unknown. The main advantages of fragment
descriptors lie in the simplicity of their computation,
the easiness of their interpretation as well as in
efficiency of their applications in similarity searches
and SAR/QSAR/QSPR modeling.

ACKNOWLEDGEMENTS

We wish to thank Prof. V. P. Solovev and
Prof A.  Varnek, for their precious help in use of
ISIDA-QSPR software.



1976 KHALEDIAN & SAAIDPOUR, Orient. J. Chem.,  Vol. 31(4), 1969-1976 (2015)

1. Grime, J. M. A.; Edwards, M. A.; Rudd, N. C.;
Unwin, P.R. Proc. Nat. Acad. Sci. 2008,
105:14277- 14282.

2. Benfenati, E.; Gini, G.; Piclin, N., Roncaglioni,
A.; Vari, M.R. Chemosphere 2003, 53:1155-
1164.

3. Mannhold, R., Poda, G. I., Ostermann, C. E.;
Tetko, I.V. J. Pharm. Sci. 2009,  98, 861-893.

4. Tetko,  I. V.; Bruneau,  P.  J. Pharm. Sci. 2004,
93(12), 3103-3110.

5. Tetko,  I. V.; Poda, G. I.  J. Med. Chem. 2004,
47, 5601-5604.

6. Kandakatla, N.; Ramakrishnan, G.;
Karthikeyan, J.; Chekkara, R. Orient. J. Chem.
2014, 30(3), 1083-1098.

7. Varma,  R. G; Wagde, R. Orient. J. Chem.,
2013, 29(4), 1621-1626.

8. Ghasemi, J.; Saaidpour, S. Chem. Pharm. Bull.
2007, 55, 669-674.

9. Ghasemi, J.; Saaidpour, S.; Brown, S. D.  J.
Mol. Struct. (Theochem) 2007, 805, 27-32.

10.  Ghasemi, J.; Saaidpour, S. Anal. Chim. Acta
2007, 604, 99–106.

11. Ghasemi, J.; Saaidpour, S. J. Chromatogr. Sci.
2009, 47, 156-163.

12. Ghasemi, J.; Saaidpour, S. QSAR Comb. Sci.
2009, 28,1245-1254.

13. Saaidpour, S. Orient. J. Chem. 2014, 30(2),
793-802.

14. Avdeef, A., Absorption and drug
development: solubility, permeability, and
charge state, 2nd ed. John Wiley & Sons,
Inc., (2012).

15. Solovev, V. P.; Varnek A.; Wipff, G. J. Chem. Inf.
Comput. Sci. 2000, 40, 847-858.

16. Varnek, A.; Wipff, G.; Solovev, V. P. Solvent
Extr. Ion Exc. 2001, 19, 791-837.

17. Varnek, A.; Wipff, G.; Solovev, V. P.; Solotnov,
A. F. J. Chem. Inf. Comput. Sci. 2002, 42 (4) ,
812-829.

18. Solovev V. P.; Varnek, A. J. Chem. Inf. Comp.
Sci. 2003, 43 (5) , 1703-1719.

19. Solovev V. P.; Varnek, A. Russ. Chem. Bull.
2004, 53, 1434-1445.

20. Varnek, A.; Solovev, V. P. Comb. Chem. High T.
Scr. 2005, 8(5), 403-416.

21. Varnek, A.; Fourches, D.; Hoonakker F.;
Solovev, V. P. J. Comput. Aided Mol. Des. 2005,
19, 693-703.

22. Dalby, A.;  Nourse, J.G.; Hounshell, W.D.;
Gushurst, A. K. I.; Grier, D. L.; Leland, B. A.;
Laufer,  J. J. Chem. Inf. Comput. Sci. 1992, 32,
244-255.

REFERENCES


