

ORIENTAL JOURNAL OF CHEMISTRY

An International Open Free Access, Peer Reviewed Research Journal

ISSN: 0970-020 X CODEN: OJCHEG 2015, Vol. 31, No. (3): Pg. 1823-1825

www.orientjchem.org

Synthesis of Oximes from the Corresponding of Organic Carbonyl Compounds with NH,OH.HCl and Oxalic Acid

NEGIN PIRI GHOZLOJEH and DAVOOD SETAMDIDEH*

Department of Chemistry, Mahabad Branch, Islamic Azad University, Mahabad, Iran. *Corresponding author E-mail: davood.setamdideh@gmail.com; d.setamdideh@iau-mahabad.ac.ir

http://dx.doi.org/10.13005/ojc/310365

(Received: July 12, 2015; Accepted: August 04, 2015)

ABSTRACT

The oximation of a variety of aldehydes and ketones was carried out with NH_2OH ·HCl in the presence of oxalic acid as catalyst under reflux conditions. The reactions were performed in CH_2CN with excellent yields(90-95%) of products in appropriate times (55-90 min).

Key words:Oximesaldoximes, acetophenoneoximes, H₂NOH.HCl, Oxalic acid.

INTRODUCTION

Oximeshave been used for the protection and purification of carbonyl compounds in organic compoundshave synthesis¹.Also,these antimicrobial²⁻³, antioxidant⁴, antitumor⁵, antidepressive⁶, antiviral agents and anticonvulsant properties7.Recently, the oximationmethods have been reviewed⁸by us. The lack of information for the oximation of carbonyl compounds in the presence of oxalic acid and our ongoing attentions to the development of modified methods in organic synthesis 8-15 encouraged us to investigate this transformation with NH₂OH·HCl in the presence of oxalic acid.So,herein, we describe a convenient method for the oximation of a variety aldehydes and ketones to their corresponding alcohols with NH₂OH·HCI/H₂C₂O₄ system.

RESULTS AND DISCUSSIONS

In order to determine optimization reaction conditions for the oximation of aldehydes and ketones, bezaldehyde and acetophenone have been used as model compounds. The results showed that using NH₂OH.HCI (1mmol) and H₂C₂O₄ (1 mmol) in CH₃CN (3 ml) was the best conditions for the oximation benzaldehyde. The reaction was completed in 60 minutes with the excellent yield (95%) of the product as shown in scheme 1.

In order to evaluate the generality of the process, a variety of aldehydes were ground with hydroxylamine hydrochloride under optimized reaction conditions. In this approach, the corresponding aldoximes were obtained in quantitative yield (90-95%). The results have been reported in table 1 (entries 1-6).

The oximation of ketones was also carried out well by $NH_2OH \cdot HCl/H_2C_2O_4$ system, but due to the lower reactivity of ketones relative to aldehydes, the oximation requires higher molar amounts of NH2OH · HCl (2 mmol) and $H_2C_2O_4$ (2mmol) vs. 1 mmol of the substrates (table 1, entries 7-12). The results showed that using NH₂OH.HCl (2mmol) and H₂C₂O₄ (2mmol) in CH₃CN (3 ml) was the best conditions for the oximationof acetophenone. The reaction was completed in 90 minutes with the excellent yield (95%) as shown in scheme 2.

Scheme 2:

EXPERIMENTAL

All substrates and reagents were purchased from commercially sources with the best quality. IR and ¹H NMR spectra were recorded on PekinElmer FT-IR RXI and 300 MHz Bruker spectrometers, respectively. The products were characterized by their ¹H NMR or IR spectra and comparison with authentic samples (melting points). All yields referred to isolated pure products. The purity of products was determined by TLC and ¹H NMR. Also, reactions were monitored by TLCs utilizing plates cut from silica gel 60 F₂₅₄ aluminum sheets.

Entry	Aldehydes	Products	Time/min.	Yield [.] /%
1 a	benzaldehyde	benzaldehydeoxime	60	95
2 ^a	4-bromobenzaldehyde	4-bromo benzaldehydeoxime	55	95
3ª	4-nitrobenzaldehyde	4-nitrobenzaldehydeoxime	60	90
4 ^a	4-methylbenzaldehyde	4-methyl benzaldehydeoxime	60	94
5ª	2-methoxylbenzaldehyde	2-methoxy benzaldehydeoxime	60	91
6 ^a	4-methoxybenzaldehyde	4-methoxy benzaldehydeoxime	60	94
7 ^b	acetophenone	acetophenoneoxime	90	95
8 ^b	4-methylacetophenone	4-methylacetophenone oxime	90	93
9 ^b	benzalacetone	benzalacetoneoxime	90	94
10 ^b	Benzophenone	Benzophenoneoxime	80	90
11 ^b	9H-fluoren-9-one	9H-fluoren-9-one oxime	80	91
12 ^b	cyclohexanone	cyclohexanoneoxime	60	95

Table 1: Oximation of Carbonyl Compounds (1 mmol) b	уy
NH ₂ OH.HCl/H ₂ C ₂ O ₄ under Reflux Conditions in CH ₂ CN (3	mL)

^{*a*} The reaction has been carried out by NH₂OH.HCl (1 mmol)/H₂C₂O₄ (1mmol). ^{*b*}The reaction has been carried out by NH₂OH.HCl (2mmol)/H₂C₂O₄ (2mmol). ^{*c*} Yields refer to isolated pure products (\pm 3%)

A typical procedure for the oximation of aldehydes with $NH_2OH \cdot HCI/H_2C_2O_4$ system

In a round-bottomed flask (10 mL) equipped with a condenser, a mixture of benzaldehyde (0.106 g, 1mmol), NH₂OH·HCI (0.07 g, 1 mmol)and oxalic acid (0.09 g, 1 mmol)in CH₂CN (3 mL) was prepared. The mixture was stirredunder reflux conditions for 60 min. The progress of the reaction was monitored by TLC. After completion of the reaction, H₂O (10 mL) was added and the reaction mixture was continued to stirring for 5 min. The product has been extracted with CH₂Cl₂(3õ15 mL). The mixture was dried over anhydrous Na₂SO₄. Evaporation of the solvent and a short column chromatography of the resulting crude material over silica gel (eluent; CCl₄/Et₂O: 5/2) afforded the purebenzaldoxime (0.115 g, 95 % yield, table 1, entry 1).

A typical procedure for the oximation of ketones with NH₂OH·HCI/H₂C₂O₄system

In a round-bottomed flask (10 mL) equipped with a condenser, a solution of acetophenone (0.120 g, I mmol) $NH_2OH \cdot HCI$ (0.14 g, 2mmol) and oxalic acid (0.18 g, 2mmol) in CH_3CN (3 mL) was prepared. The mixture was stirred under reflux conditions for 90 min. The progress of the

- 1. Xia, J. J.; Wang, G. W.*Molecules* **2007**, *12*, 231-236.
- Li, H. Q.; Xiao, Z. P.; Yin, L.; Yan, T.; Lv, P.C.; Zhu, H. L. . *Eur. J. Med. Chem.* 2009, 44, 2246-2251.
- Karakurt, A.; Sevim, D.; Özalp, M.; Özbey, S.; Kendi, E.; Stables, J. P. *Eur. J. Med. Chem.* 2001, *36*, 421-433.
- Puntel, G. O.; de Carvalho, N. R.; Gubert, P.; Palma, A. S.; Corte, C. L. D.; Ávila, D. S.; Pereira, M. E.; Carratu, V. S.; Bresolin, L.; J. Da Rocha, B. T.; Soares, F. A. A. *Chem. Biol. Interact.* 2009, *177*, 153-160.
- Wang, T. C.; Chen, I. L.; Lu, C. M.; Kuo, D. H.; Liao, C. H *Chem. Biodivers.* 2005, *2*, 253-263.
- De Sousa, D. P.; Schefer, R. R.; Brocksom U.; Brocksom, T. J. *Molecules* 2006, *11*, 148-155.
- 7. Ouyang, G.; Chen, Z.; Cai, X. J.; Song, B. A.; Bhadury, P. S.; Yang, S.; Jin, L. H.; Xue, W.; Hu,

reaction was monitored by TLC. After completion of the reaction, H_2O (10 mL) was added and the reaction mixture was continued to stirring for 5 min. The product has been extracted with $CH_2Cl_2(3\tilde{0}15 \text{ mL})$. The mixture was dried over anhydrous Na_2SO_4 . Evaporation of the solvent and a short column chromatography of the resulting crude material over silica gel (eluent; CCl_4/Et_2O : 5/2) afforded the pureacetophenoneoxime (0.128 g, 95% yield, table 1, entry 7).

CONCLUSION

In this context, the oximation of a variety of aldehydes and ketones was carried out efficiently with NH₂OH·HCl/H₂C₂O₄ system. The reactions were performed in CH₃CNunder reflux conditions. This new protocol for the oximation of carbonyl compounds could be a useful addition to the present methodologies.

ACKNOWLEDGEMENTS

The authors gratefully appreciated the financial support of this work by Islamic Azad University branch of Mahabad.

REFERENCES

D.Y.; Zeng, S. *Bioorg. Med. Chem.* **2008**, *16*, 9699-9707.

- Setamdideh, D.; Khezri, B.; Esmaeilzadeh, S. J. Chin. Chem. Soc.2012, 59, 1119-1124.
- 9. Setamdideh, D.; Khezri, B.; Alipouramjad, A. *J. Chin. Chem. Soc.* **2013**, *60*, 590-596.
- 10. Sofighaderi, S.; Setamdideh, D. Orient. J. Chem. 2013, 29, 1135-1137.
- 11. Setamdideh, D.; Sepehraddin, F. J. Mex. Chem. Soc. 2014, 58, 22-26.
- AziziAsl, P.; Setamdideh, D. J. Chin. Chem. Soc. 2014, 59, 940-944. f) Setamdideh, D. J. Mex. Chem. Soc. 2014, 58, 230-234.
- 13. Azimzadeh, M.; Setamdideh, D. *Orient. J. Chem.*, **2015**, *31*, 1085-1089.
- 14. Rezaeekhoredehforosh, R.; Khezri, B.; Setamdideh, D. *Orient. J. Chem.*, **2015**, *31*, 1205-1209.
- 15. Mahmoudi, M.; Setamdideh, D. Orient. J. Chem., 2015, 31, 1215-1218.