ISSN : 0970 - 020X, ONLINE ISSN : 2231-5039
     FacebookTwitterLinkedinMendeley

First Principal and QM/MM Study of Dopamine Adsorption on Single Wall Carbon Nano Tubes and Single Wall Boroan Nitride Nano Tubes

Mojgan Jalili

Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran.

Corresponding Author Email : mojganjalili82@gmail.com

DOI : http://dx.doi.org/10.13005/ojc/320335

Article Publishing History
Article Received on : March 29, 2016
Article Accepted on : May 03, 2016
Article Published : 19 May 2016
Article Metrics
ABSTRACT:

In the brain, dopamine functions as a neurotransmitter a chemical released by neurons (nerve cells) to send signals to other nerve cells. The brain includes several distinct dopamine pathways, one of which plays a major role in reward-motivated behavior. In this work we have calculated our systems based on the Dopamine binding with various diameters of SWBNNTs and SWCNTs. In this work, the electron density profile in the composition of the Dopamine binding to SWCNTs and SWBNNTs have been calculated.

KEYWORDS:

dopamine; adsorption on SWCNTs and SWBNNTs; LOL; ELF

Download this article as: 

Copy the following to cite this article:

Jalili M. First Principal and QM/MM Study of Dopamine Adsorption on Single Wall Carbon Nano Tubes and SingleWall Boroan Nitride Nano Tubes. Orient J Chem 2016;32(3).


Copy the following to cite this URL:

Jalili M. First Principal and QM/MM Study of Dopamine Adsorption on Single Wall Carbon Nano Tubes and SingleWall Boroan Nitride Nano Tubes. Orient J Chem 2016;32(3). Available from: http://www.orientjchem.org/?p=16144


Introduction

Dopamine is an organic chemical of the catecholamine and phenethylamine families that plays several important roles in the brain and body. it is an amine synthesized by removing a carboxyl group from a molecule of its precursor chemical L-DOPA, which is synthesized in the brain and kidneys. Dopamine is also synthesized in plants and most multicellular animals.

In the brain, dopamine functions as a neurotransmitter a chemical released by neurons (nerve cells) to send signals to other nerve cells. The brain includes several distinct dopamine pathways, one of which plays a major role in reward-motivated behavior. Most types of reward increase the level of dopamine in the brain, and most addictive drugs increase dopamine neuronal activity. Other brain dopamine pathways are involved in motor control and in controlling the release of various hormones.

Outside the central nervous system, dopamine functions in several parts of the peripheral nervous system as a local chemical messenger. Several important diseases of the nervous system are associated with dysfunctions of the dopamine system, and some of the key medications used to treat them work by altering the effects of dopamine. Parkinson’s disease, a degenerative condition causing tremor and motor impairment, is caused by a loss of dopamine-secreting neurons in an area of the midbrain (called the substantia nigra).

Its metabolic precursor L-DOPA can be manufactured, and in its pure form marketed as Levodopa is the most widely used treatment for the condition. There is evidence that schizophrenia involves altered levels of dopamine activity, and most antipsychotic drugs used to treat this are dopamine antagonists which reduce dopamine activity. Similar dopamine antagonist drugs are also some of the most effective anti-nausea agents. Restless legs syndrome and attention deficit hyperactivity disorder (ADHD) are associated with decreased dopamine activity. Dopaminergic stimulants can be addictive in high doses, but some are used at lower doses to treat ADHD. Dopamine itself is available as a manufactured medication for intravenous injection: although it cannot reach the brain from the bloodstream, its peripheral effects make it useful in the treatment of heart failure or shock, especially in newborn babies [1,2].

The carbon nanotube (CNT) is a representative nano-material. CNT is a cylindrically shaped carbon material with a nano-metric-level diameter.

Carbon nano cone has a high asymmetric geometry that in our simulations, classical non-equilibrium molecular dynamics method is adopted. The cone is entirely characterized by its cone angle. When one pentagon is introduced into a hexagonal carbon network, a 60 declination defect is formed; leading to the formation of a nano cone with cone angle of 118 and the equilibrium carbon-carbon bond length is 1.418 Å. In this work, we focus on the cone with the cone angle of 180, which is the largest angle observed experimentally and theoretically.

Moreover, in all theoretical models so far, the rectification efficiency decreases quickly as the structure length increases Its structure, which is in the form of a hexagonal mesh, resembles a graphite sheet and it carries a carbon atom located on the vertex of each mesh. The sheet has rolled and its two edges have connected seamlessly.

Although it is a commonplace material using in pencil leads, its unique structure causes it to present characteristics that had not found with any other materials. CNT can be classified into single-wall CNT, double-wall CNT and multi-wall CNT according to the number of layers of the rolled graphite.

The type attracting most attention is the single-wall CNT, which has a diameter deserving the name of “nanotube” of 0.4 to 2 nanometers. The length is usually in the order of microns, but single-wall CNT with a length in the order of centimeters has recently released

CNT can be classified into single-wall CNT, double-wall CNT and multi-wall CNT according to the number of layers of the rolled graphite. The type attracting most attention is the single-wall CNT, which has a diameter deserving the name of “nanotube” of 0.4 to 2 nanometers

The length is usually in the order of microns, but single-wall CNT with a length about centimeters have recently released. The extremities of the CNT have usually closed with lids of the graphite sheet

Boron nitride nanotube (BNNTs) has attracted many interests due to their large gap semi conducting character. Boron nitride (BN) is a structural existing in cubic (diamond-like), hexagonal (graphite-like), turbo static, and amorphous forms .these compounds have been produced by a variety of methods, such as arc melting, high temperature chemical reaction, carbon nanotube templates, and laser ablating, The most attention has been focused on the development of new methods for the production of nanotube and inorganic fullerene of other materials.

In addition, theoretical calculations have been described the possible existence of small BN clusters.

Theoretical studies have been performed for BN doped in CNTs which it has been found that a structure built from squares and hexagons is more stable than those built from pentagons and hexagons. This is because in the second case less stable B-B and N-N bonds are formed.

Monajjemi and coworkers have simulated a large range of the nanotube carbons and other molecules via a wide range of methods and basis sets in the field of Physical chemistry, Nano biotechnology, quantum phenomenon, Nano capacitors, chemical biology, adsorption, and NMR shielding [3-119].

In this work we have calculated our systems based on the dopamine binding with various diameters of SWBNNTs and SWCNTs .The effects of these binding for the drug delivery can also be calculated for any further comparison and discussion.

Zigzag BNNTs (n, 0) are expected to have direct band gap. On the other hand, armchair BNNTs (m, m) will have indirect band gap [120]. Because of their large band gap of (~5 eV),

experiments using BNNTs as the conduction channel for field-effect transistors (FETs) showed that BNNTs allowed transport through only the valence band.

Another important feature about the band gaps of BNNTs is that they are tunable by doping with carbon , radial deformation ,or by applying a transverse electric field across the BNNT “so-called giant stark effect” [121].

Electron localization function (ELF)

In this work, the electron density profile in the composition of the Dopamine binding to SWCNTs and SWBNNTs have been calculated.

The electron density has been defined as:

Vol32No3_firs_moja_equ-1

 

where  is occupation number of orbital i,  is orbital wave function, c is the basis function, C is
Bader [122] has found that the regions with large electron localization must have large
magnitudes of Fermi-hole integration. However, the Fermi hole is a six-dimension function and
thus difficult to be studied visually. Becke and Edgecombe noted that spherically averaged like spin conditional pair probability has a direct correlation with the Fermi hole and further suggested electron localization function (ELF) as:

 

Savin et al. have reinterpreted ELF in the viewpoint of kinetic energy, [123] which would make ELF also meaningful for Kohn-Sham DFT wave-function or even post-HF wave-function. They indicated that D(r) reveals the excess kinetic energy density caused by Pauli repulsion, while D0(r) can be considered as Thomas-Fermi kinetic energy density.

To overcome this problem, Multiwfn automatically adds a minimal value of 10-5 to D(r). This treatment does not really affect the ELF value in interesting regions, in which case, the actual kinetic energy term in D(r) is replaced by Kirzhnits type second-order gradient expansion that is:

FORMULA

 

where

Formula

 

and

formula

 

Vol32No3_mol_moja_equ--3

 

So that ELF is totally independent of the wave-function and can be used to analyze electron density from X-ray diffraction data. It is clear that Tsirelson’s ELF can also be used to analyze electron density from quantum chemistry calculation, though, it is not as good as the ELF defined by Becke owing its suitability to the approximation introduced in kinetic energy term; however, qualitative conclusions can still be recovered in general.

Another function similar to ELF is called the localized orbital locator (LOL) which is used to locate high localization regions.

LOL contains a similar expression compared to ELF as well. In fact, the chemically significant regions that highlighted by LOL and ELF are generally qualitatively comparable, while Jacobsen pointed out that LOL conveys clearer and more decisive picture compared to ELF, [123-127]. Clearly, LOL can be interpreted in terms of kinetic energy similar to ELF. However, LOL can also be interpreted in terms of localized orbital. Small or large value of LOL is usually appeared in boundary (inner) region of localized orbitals due to the large of small gradient of orbital wave-function in this area respectively. The value range of LOL is identical to ELF, namely [0, 1].

Computational Details

Parts of the Nanotubes including dopamine have been modeled with the QM/MM method and the calculations are carried out with the Monte Carlo method.

In this investigation, differences in force field are illustrated by comparing the calculated energy with AMBER and OPLS force fields. Furthermore, a HyperChem professional release 7.01 programs is used for the additional calculations.

The final parameterization of nanotubes was computed using self-consistent field calculations in order to find the optimal starting geometry, as well as the partial charges. The density functional theory with the van der Waals density functional was employed to model the exchange-correlation energies of graphene layers. All optimization of graphene layers were performed by Gaussian 09. The main focus in this study is to obtain the results from DFT methods such as m062x, m06-L, and m06 for the methamphetamine and dopamine. The m062x, m06-L and m06-HF are rather new DFT functional with a good correspondence in adsorption calculations between tubes and methamphetamine and dopamine are useful for the energies and other physical chemistry data.

Geometry optimizations and electronic structure calculations have been carried out using the m06 (DFT) functional. This approach is based on an iterative solution of the Kohn-Sham equation [128] of the density functional theory in a plane-wave set with the projector-augmented wave pseudo-potentials. The Perdew-Burke-Ernzerhof (PBE) [129] exchange-correlation (XC) functional of the generalized gradient approximation (GGA) is also used. The optimizations of the lattice constants and the atomic coordinates are made by the minimization of the total energy.

The charge transfer and electrostatic potential-derived charge were also calculated using the Merz-Kollman-Singh [130], chelp [131], or chelpG [132].

Result and Discussion

In this study, difference in force field is illustrated by comparing the energy calculated by using force fields, MM+ and OPLS. Also, it has been investigated polar solvent and the temperature effects (between 260K and 400K) on the stability of SWBNNT bonded to methamphetamine and dopamine in various solvents. The quantum mechanics (QM) calculations were carried out with the HyperChem 8.0 program. This study mainly focuses on the electron density of methamphetamine and dopamine in a binding system with (n, n) SWBNNTs surfaces and SWCNTs. The models and situation of molecular structures and binding interaction are shown in figs1- 5. As it is indicated in table HOMO/LUMO and Gap energy shows suitable binding [133,134].

According to the above equations the largest electron localization is located on atoms which are bonded to nanotubes where the electron motion is more likely to be confined within that region. If electrons are completely localized in those atoms, they can be distinguished from the ones outside. As shown in figures1-45 the large density is close to the bonded atoms. The regions with large electron localization need to have large magnitudes of Fermi-hole integration which would lead those atoms towards superparamagnetic. The fermi hole is a six-dimension function and as a result, it is difficult to be studied visually. Based those equations, Becke and Edgecombe noted that the Fermi hole is a spherical average of the spin which is in good agreement with our results in tables and Figs .

 

 Fig.1: Molecular geometry of Dopamine Figure 1: Molecular geometry of Dopamine  

Click here to View figure

 

Fig.2: Molecular geometry of (5,5),(7,7)SWCNTs and (5,5),(7,7)SWBNNTs with binding to Dopamine Figure 2: Molecular geometry of (5,5),(7,7)SWCNTs and (5,5),(7,7)SWBNNTs with binding to Dopamine 

Click here to View figure

 

Fig.3 Dopamine Geometry vs 3 axis Figure 3: Dopamine Geometry vs 3 axis

Click here to View figure

 

Table 1:HOMO, LUMO and BAND GAP of some Dopamine-(5, 5) SWBNNT Table 1: HOMO, LUMO and BAND GAP of some Dopamine-(5, 5) SWBNNT 


Click here to View table

 

Figure 4: Electron density and LOL for (5, 5) SWBNNTs-Dopamine Complex Figure 4: Electron density and LOL for (5, 5) SWBNNTs-Dopamine Complex

Click here to View figure

 

Fig.5: LOL and ELF map for (5, 5) SWCNTs with Dopamine Figure 5: LOL and ELF map for (5, 5) SWCNTs with Dopamine


Click here to View figure

 

Fig.6: G ( r ) for (7,7) SWCNTs-Dopamine and Electron density for (5,5)SWBNNTs Complexes Figure 6: G ( r ) for (7,7) SWCNTs-Dopamine and Electron density for (5,5)SWBNNTs Complexes 


Click here to View figure

 

References

  1. Dopamine: Biological activity”. IUPHAR/BPS guide to pharmacology. International Union of Basic and Clinical Pharmacology. Retrieved 29 January (2016).
  2. Volkow, ND.; Wang, GJ.; Kollins, SH.; Wigal, TL.; Newcorn, JH.;Telang, F.; Fowler, JS.; Zhu, W.; Logan, J.; Ma, Y.; Pradhan, K.; Wong, C.; Swanson, JM, JAMA (2009)  302 (10): 1084–91. doi:10.1001/jama.2009.1308. PMC 2958516. PMID 19738093.
  3. Monajjemi, M.; Lee, V.S.; Khaleghian, M.; B. Honarparvar, B.; F. Mollaamin, F. J. Phys.Chem C. 2010, 114, 15315
  4. Monajjemi, M. Struct Chem. 2012, 23,551–580
  5. Monajjemi, M.; Chegini, H.; Mollaamin, F.; Farahani, P.  Fullerenes, Nanotubes, and Carbon Nanostructures. 2011, 19, 469–482
  6. Monajjemi, M .; Afsharnezhad ,S.; Jaafari , M.R.; Abdolahi ,T.;  Nikosade ,A.; Monajemi ,H.; Russian Journal of physical chemistry A, 2007, 2,1956-1963
  7. Monajjemi, M.; Baei, M.T.; Mollaamin, F. Russian Journal of Inorganic Chemistry. 2008, 53 (9), 1430-1437
  8. Monajjemi, M.; Rajaeian, E.; Mollaamin, F.; Naderi, F.; Saki, S. Physics and Chemistry of Liquids. 2008, 46 (3), 299-306
  9. Monajjemi, M.;  Boggs, J.E.  J. Phys. Chem. A, 2013, 117, 1670 −1684
  10. Mollaamin, F.; Monajjemi, M, Journal of Computational and Theoretical Nanoscience. 2012, 9 (4) 597-601
  11. Monajjemi, M.; Khaleghian, M, Journal of Cluster Science. 2011, 22 (4), 673-692
  12. Mollaamin, F.; Varmaghani, Z.; Monajjemi, M, Physics and Chemistry of Liquids. 2011, 49 318
  13. Nafisi, S.; Monajemi, M.; Ebrahimi, S. Journal of  Molecular Structure. 2004,705 (3) 35-39
  14. Fazaeli, R.; Monajjemi, M.; Ataherian, F.; Zare, K. Journal of Molecular Structure: THEOCHEM.2002, 581 (1), 51-58
  15. Monajjemi, M.;  Razavian, M.H.;  Mollaamin,F.;  Naderi,F.;  Honarparvar,B.; Russian Journal of Physical Chemistry A , 2008 , 82 (13),  2277-2285
  16. Monajjemi, M.; Seyed Hosseini, M.; Mollaamin, F. Fullerenes, Nanotubes, and Carbon Nanostructures. 2013, 21, 381–393
  17. Monajjemi, M.; Faham, R.; Mollaamin, F. Fullerenes, Nanotubes, and Carbon Nanostructures, 2012 20, 163–169
  18. Mollaamin, F.; Najafi, F.; Khaleghian, M.; Khalili Hadad, B.; Monajjemi, M.  Fullerenes, Nanotubes, and Carbon Nanostructures, 2011 19, 653–667
  19. Mollaamin, F.;  Baei, MT.;  Monajjemi, M.; Zhiani, R.;  Honarparvar, B.;
  20. Russian Journal of Physical Chemistry A, Focus on Chemistry, 2008, 82 (13), 2354-2361
  21. Monajjemi, M. Chemical Physics. 2013, 425, 29-45
  22. Monajjemi, M.; Heshmat, M.; Aghaei, H.; Ahmadi, R.; Zare, K. Bulletin of the Chemical Society of Ethiopia, 2007, 21 (1)
  23. Monajjemi, M.; Honarparvar, B. H. ; Haeri, H. ; Heshmat ,M.;  Russian Journal of  Physical Chemistry C. 2006, 80(1):S40-S44
  24. Monajjemi, M.; Ketabi, S.; Amiri, A. Russian Journal of Physical Chemistry, 2006, 80 (1), S55-S62
  25. Yahyaei, H.; Monajjemi, M.; Aghaie, H.; K. Zare, K. Journal of Computational and Theoretical Nanoscience. 2013, 10, 10, 2332–2341
  26. Mollaamin, F.; Gharibe, S.; Monajjemi, M. Int. J. Phy. Sci, 2011, 6, 1496-1500
  27. Monajjemi, M.; Ghiasi, R.; Seyed Sadjadi, M.A. Applied Organometallic Chemistry,2003, 17, 8, 635–640
  28. Monajjemi, M.; Wayne Jr, Robert. Boggs, J.E.  Chemical Physics. 2014, 433, 1-11
  29. Monajjemi, M.; Sobhanmanesh, A.; Mollaamin, F. Fullerenes, Nanotubes, and Carbon Nanostructures, 2013, 21 47–63
  30. Monajjemi, M.; Mollaamin, F. Journal of Computational and Theoretical Nanoscience, 2012, 9 (12) 2208-2214
  31.  Monajjemi, M.; Honarparvar, B.; Nasseri, S. M. .; Khaleghian M. Journal of Structural Chemistry. 2009, 50, 1, 67-77
  32.  Monajjemi, M.; Aghaie, H.; Naderi, F. Biochemistry (Moscow).2007, 72 (6), 652-657
  33. Ardalan, T.; Ardalan, P.; Monajjemi, M. Fullerenes, Nanotubes, and Carbon Nanostructures, 2014, 22: 687–708
  34.  Mollaamin, F.; Monajjemi, M.; Mehrzad, J. Fullerenes, Nanotubes, and Carbon Nanostructures. 2014, 22: 738–751
  35.  Monajjemi, M.; Najafpour, J.; Mollaamin, F. Fullerenes, Nanotubes, and Carbon Nanostructures. 2013, 21(3), 213–232
  36. Monajjemi, M.;  Karachi, N.; Mollaamin, F.  Fullerenes, Nanotubes, and Carbon Nanostructures, 2014, 22: 643–662
  37.  Yahyaei, H.; Monajjemi, M. Fullerenes, Nanotubes, and Carbon Nanostructures.2014, 22(4), 346–361
  38.  Monajjemi, M. Falahati, M.; Mollaamin, F.; Ionics, 2013, 19, 155–164
  39.  Monajjemi, M.; Mollaamin, F. Journal of Cluster Science, 2012, 23(2), 259-272
  40.  Tahan, A.; Monajjemi, M. Acta Biotheor, 2011, 59, 291–312
  41.  Lee, V.S.; Nimmanpipug, P.; Mollaamin, F.; Kungwan, N.; Thanasanvorakun, S..; Monajjemi, M.  Russian Journal of Physical Chemistry A, 2009, 83, 13, 2288–2296
  42. Monajjemi, M.; Heshmat, M.; Haeri, HH, Biochemistry (Moscow), 2006, 71 (1), S113-S122
  43. Monajjemi, M.; Yamola, H.; Mollaamin, F. Fullerenes, Nanotubes, and Carbon Nanostructures, 2014, 22, 595–603
  44. Mollaamin, F.; Layali, I.; Ilkhani A. R.; Monajjemi, M.  African Journal of Microbiology Research .2010, 4(24) 2795-2803
  45. Mollaamin, F.; Shahani poor, p K. .; Nejadsattari, T.  ; Monajjemi, M. African Journal of Microbiology Research. 2010, 4(20) 2098-2108
  46. Monajjemi, M.; Ahmadianarog, M. Journal of Computational and Theoretical Nanoscience. 2014,   11(6), 1465-1471
  47. Monajjemi, M.; Jafari Azan, M.; Mollaamin, F. Fullerenes, Nanotubes, and Carbon Nanostructures.2013, 21(6), 503–515
  48. Mollaamin, F.; Monajjemi, M. Physics and Chemistry of Liquids .2012, 50,  5,  2012, 596–604
  49. Monajjemi, M.; Khosravi, M.; Honarparvar, B.; Mollaamin, F.; International Journal of Quantum Chemistry, 2011, 111, 2771–2777
  50.  Khaleghian, M.; Zahmatkesh, M.; Mollaamin, F.; Monajjemi, M.  Fullerenes, Nanotubes, and Carbon Nanostructures, 2011, 19(4): 251–261
  51. Monajjemi, M.; Baheri, H.; Mollaamin, F.  Journal of Structural Chemistry.2011 52(1), 54-59
  52. Mahdavian, L.; Monajjemi, M.; Mangkorntong, N. Fullerenes, Nanotubes and Carbon Nanostructures, 2009, 17 (5), 484-495
  53. Monajjemi, M., Mahdavian, L., Mollaamin, F. Bull. Chem. Soc. Ethiop. 2008, 22(2), 277-286
  54. Monajjemi, M.; Afsharnezhad, S, Jaafari, M.R..; Mirdamadi, S..; Mollaamin, F..; Monajemi, H. Chemistry .2008, 17 (1), 55-69
  55. Monajjemi, M.; Mollaamin, F.; Gholami, M. R.; Yoozbashizadeh, H.;  Sadrnezhaad, S.K.; Passdar, H.;  Main Group Metal Chemistry, 2003, 26, 6, 349-361
  56. Monajjemi, M.; Azad ,MT.; Haeri, HH.; Zare, K.; Hamedani, Sh.; JOURNAL OF CHEMICAL RESEARCH-S.2003, (8): 454-456
  57. Monajjemi, M.; Najafpour, J. Fullerenes, Nanotubes, and Carbon Nanostructures, 2014, 22(6): 575–594
  58. Monajjemi, M.; Noei, M.; Mollaamin, F. Nucleosides, Nucleotides and Nucleic Acids. 2010 29(9):676–683
  59. Ghiasi, R.; Monajjemi, M.  Journal of Sulfur Chemistry .2007,28, 5, 505-511
  60. Monajjemi, M.; Ghiasi, R.; Abedi, A. Russian Journal of Inorganic Chemistry.2005, 50(3), 382-388
  61. Monajjemi, M. .; Naderi, F.; Mollaamin, F.; Khaleghian, M.  J. Mex. Chem. Soc. 2012, 56(2), 207-211
  62.  Monajjemi, M.; Farahani, N.; Mollaamin, F.  Physics and Chemistry of Liquids, 2012, 50(2) 161–172
  63.  Monajjemi, M.; Seyed Hosseini, M. Journal of Computational and Theoretical Nanoscience .2013, 10 (10), 2473-2477
  64.  Monajjemi , M.;  Honaparvar , B.; Khalili Hadad ,B.; Ilkhani ,AR.; Mollaamin, F. African Journal of Pharmacy and Pharmacology .2010, 4(8), 521 -529
  65.  Monajjemi, M.  Theor Chem Acc, 2015, 134:77 DOI 10.1007/s00214-015-1668-9
  66.   Monajjemi, MJournal of Molecular Modeling , 2014, 20, 2507
  67.   Monajjemi , M.; Honarparvar, B.; Monajemi, H.;. Journal of the Mexican Chemical Society, 2006, 50 (4), 143-148
  68.  Monajjemi, M.; Khaleghian, M.; Mollaamin, F.   Molecular Simulation. 2010, 36, 11,  865–
  69.  Ilkhani, Ali R.; Monajjemi, M. Computational and Theoretical Chemistry.2015 1074, 19–25
  70.  Monajjemi, M.  Biophysical Chemistry. 2015 207,114 –127
  71.  Monajjemi, M., Moniri, E., Panahi, H.A , Journal of Chemical and Engineering Data.2001, 1249-1254.
  72. Mollaamin, F.; Najafpour, J.; Ghadami, S.; Ilkhani, A. R.; Akrami, M. S.; Monajjemi, M. Journal of Computational and Theoretical Nanoscience. 11 (5), 1290-1298
  73.  Monajjemi, M.; Ghiasi, R.; Ketabi, S.; Passdar, H.; Mollaamin, F. Journal of Chemical Research . 2004, 1, 11.
  74.  Monajjemi, M.; Heshmat, M.; Haeri, H.H. Biochemistry (Moscow).2006, 71, 113-122
  75.  Monajjemi, M.; Heshmat, M.; Aghaei, H.;Ahmadi, R.; Zare, K. Bulletin of the Chemical Society of Ethiopia. 2007, 21, 111–116
  76.  Monajjemi, M., Kharghanian, L., Khaleghian, M., Chegini, H. Fullerenes Nanotubes and Carbon Nanostructures.2014, 22, 8, 0.1080/1536383X.2012.717563
  77.  Sarasia, E.M.; Afsharnezhad, S.; Honarparvar, B.; Mollaamin, F.; Monajjemi, M.
  78. Physics and Chemistry of Liquids. 2011, 49 (5), 561-571
  79.  Amiri, A.; Babaeie, F.; Monajjemi, M. Physics and Chemistry of Liquids. 2008, 46, 4, 379-389
  80.  Monajjemi, M.; Heshmat, M.; Haeri, H.H.; Kaveh, F. Russian Journal of Physical Chemistry A, 2006, 80, 7, 1061-1068
  81.  Monajjemi, M.; Moniri, E.; Azizi, Z.; Ahmad Panahi, H. Russian Journal of Inorganic Chemistry. 2005, 50, 1, 40-44
  82.  Jalilian,H.; Monajjemi, M. Japanese Journal of Applied Physics. 2015, 54, 8, 08510
  83.  Mollaamin, F.; Monajjemi, M. Journal of Computational and Theoretical Nanoscience. 2015, 12, 6, 1030-1039
  84.  Felegari, Z.; Monajjemi, M. Journal of Theoretical and Computational Chemistry. 2015, 14, 3, 1550021
  85.  Shojaee, S., Monajjemi, M. Journal of Computational and Theoretical Nanoscience. 2015, 12, 3, 449-458
  86.  Esmkhani, R.; Monajjemi, M. Journal of Computational and Theoretical Nanoscience. 2015. 12, 4, 652-659
  87.  Monajjemi, M., Seyedhosseini, M., Mousavi, M., Jamali, Z. Journal of Computational and Theoretical Nanoscience. 2015 , 23 (3), 239-244
  88.  Ghiasi, R.; Monajjemi, M.; Mokarram, E.E.; Makkipour, P. Journal of Structural Chemistry. 2008, 4 , 4, 600-605
  89. . Mahdavian, L.; Monajjemi, M. Microelectronics Journal. 2010, 41(2-3), 142-149
  90.  Monajjemi, M.; Baie, M.T.; Mollaamin, F. Russian Chemical Bulletin.2010, 59, 5, 886-889
  91.  Bakhshi, K.; Mollaamin, F.; Monajjemi, M. Journal of Computational and Theoretical Nanoscience. 2011, 8, 4, 763-768
  92.  Darouie, M.; Afshar, S.; Zare, K., Monajjemi, M. journal of Experimental Nanoscience.2013, 8, 4, 451-461
  93.  Amiri, A.; Monajjemi, M.; Zare, K.; Ketabi, S. Physics and Chemistry of Liquids. 2006, 44, 4, 449-456.
  94. Zonouzi, R.;Khajeh, K.; Monajjemi, M.; Ghaemi, N. Journal of Microbiology and Biotechnology. 2013, 23, 1 ,7-14
  95.  Ali R. Ilkhani .; Majid Monajjemi, Computational and Theoretical Chemistry.2015, 1074 19–25
  96.  Tahan, A.; Mollaamin, F.;  Monajjemi, M. Russian Journal of Physical Chemistry A, 2009, 83 (4), 587-597
  97.  Khalili Hadad, B.;  Mollaamin, F.;  Monajjemi, M, Russian Chemical Bulletin,2011, 60(2):233-236
  98.  Mollaamin, F.;  Monajjemi, M.;  Salemi, S.;  Baei, M.T. Fullerenes Nanotubes and Carbon Nanostructures, 2011, 19, 3, 182-196
  99.  Mollaamin, F.;  Shahani Pour.;  K., Shahani Pour, K.; ilkhani, A.R.;  Sheckari, Z., Monajjemi, M Russian Chemical Bulletin , 2012 , 61(12), 2193-2198
  100.  Shoaei, S.M.; Aghaei, H.; Monajjemi, M.; Aghaei, M. Phosphorus, Sulfur and Silicon and the Related Elements. 2014, 189, 5; 652-660
  101.  Mehrzad, J., Monajjemi, M., Hashemi, M , Biochemistry (Moscow).2014 , 79 (1), 31-36
  102.  Moghaddam, N.A., Zadeh, M.S., Monajjemi, M. Journal of Computational and Theoretical Nanoscience , 2015 , 12, 3, doi:10.1166/jctn.2015.3736
  103. Joohari, S.; Monajjemi, M , Songklanakarin Journal of Science and Technology , 2015 , 37(3):327
  104.  Rajaian, E., Monajjemi, M., Gholami, M.R, Journal of Chemical Research – Part S ,2002, 6, 1, 279-281
  105. Ghassemzadeh, L., Monajjemi, M., Zare, K , Journal of Chemical Research – Part S, 2003, 4, 195-199
  106. Barforushi. M. M., Safari. S., and Monajjemi. M. ., J. Comput. Theor. Nanosci. 2015,12, 3058-3065
  107.  Mollaamin. F., Ilkhani. A., Sakhaei. N., Bonsakhteh. B., Faridchehr. A., Tohidi. S., and Monajjemi. M. ., J. Comput. Theor. Nanosci. 2015,12, 3148-3154
  108. Rahmati. H. and Monajjemi. M J. Comput. Theor. Nanosci. 2015.,12, 3473-3481
  109.  Bashiz. R. T. ., and Monajjemi. M .,J. Comput. Theor. Nanosci. 2015.,12, 3808-3816
  110.  Nejad. A.M.  and Monajjemi. M .,J. Comput. Theor. Nanosci. 2015.,12, 3902-3910
  111.  Monajjemi. M, Bagheri., Moosavi M. S., Moradiyeh. N., Zakeri. M.,
  112. Attarikhasraghi. N., Saghayimarouf. N., Niyatzadeh. G., Shekarkhand. M.,
  113. Khalilimofrad. M.S., Ahmadin. H. and Ahadi. M., Molecules 2015, 20, 21636–21657; doi:10.3390/molecules201219769
  114.  Shabanzadeh. E.  and Monajjemi. M., J. Comput. Theor. Nanosci. 2015., 12, 4076-4086
  115.  Elsagh. A., Jalilian. H., Kianpour. E., Mokri. H. S. G., Rajabzadeh. M., Moosavi M. S., Amiri. F. G., and Monajjemi. M., J. Comput. Theor. Nanosci. 2015.,12, 4211-4218
  116.  Faridchehr. A., Rustaiyan. A., and Monajjemi. M.  J. Comput. Theor. Nanosci. 2015., 12, 4301-4314
  117. Tohidi. S., Monajjemi. M.,, and Rustaiyan. A. .,J. Comput. Theor. Nanosci. 2015.,12, 4345-4351
  118.  Zadeh. M. A.A., Lari. H., Kharghanian. L., Balali. E., Khadivi. R., Yahyaei. H., Mollaamin. F., and Monajjemi. M.  J. Comput. Theor. Nanosci. 2015.,12, 4358-4367
  119.  Dezfooli. S., Lari. H., Balali. E., Khadivi. R., Farzi. F., Moradiyeh. N., and Monajjemi. M. J. Comput. Theor. Nanosci. 2015.,12, 4478-4488
  120.  Jalilian. H., Sayadian. M., Elsagh. A., Farzi. F., Moradiyeh. N., Soofi. N.S., Khosravi. S., Mohammadian. N. T., and Monajjemi. M. J. Comput. Theor. Nanosci. 2015.,12, 4785-4793
  121.  Farzi. F., Bagheri. S., Rajabzadeh. M., Sayadian. M., Jalilian. H. , Moradiyeh. N., and Monajjemi. M. J. Comput. Theor. Nanosci. 2015.,12, 4862-4872
  122.  Monajjemi. M and Mohammadian. N.T.  J. Comput. Theor. Nanosci. 2015.,12, 4895-4914
  123.  Monajjemi, M., Chahkandi, B. Journal of Molecular Structure: THEOCHEM, 2005, 714 (1), 28, 43-60.
  124.  Loiseau. . A.      , Willaime. F.    , Demoncy. N., Hug. G.  and  Pascard. H.   , Phys.  Rev.  Lett. 1996.,76 4737,
  125.   K. H. Khoo, M.  S.  C. Mazzoni and S. G. Louie, Phys. Rev. B 69, 201401R, (2004)
  126.  Bader, R.F.W.  Atoms in Molecule: (1990), A quantum Theory (Oxford Univ. press, Oxford).
  127.  Savin , Angew. Chem. Int. Ed.Engl. (1992), 31, 187.
  128.  Jacobsen, H. Can. J. Chem. (2008), 86, 695-702.
  129.  Lu, T.; Chen, F. Acta Chim. Sinica, (2011), 69, 2393-2406.
  130.  Lu, T.; Chen, F J. Mol. Graph. Model, (2012), (38): 314-323.
  131.  Lu, T.; Chen F. J. Comp. Chem. (2012), (33) 580-592.
  132.  Kohn, W.; Sham, LJ. Phys. Rev, 1965, (140) A: 1133-1138.
  133.  Perdew, J .P. Burke, K.; Phys. Rev. Lett.1996, (77): 3865-3868.
  134.  Besler, B.H.; Merz, K.M.; Kollman, P.A. J. comp. Chem, 1990, (11): 431-439, DOI: 10.1002/jcc.540110404
  135.  Chirlian, L.E.; Francl, M.M. J.comp.chem, 1987, (8): 894-905, DOI: 10.1002/jcc.540080616
  136. Brneman, G.M, Wiberg, K.B. J. Comp Chem, 1990, (11): 361
  137. Naghsh,F, oriental journal of chemistry, 2015, 31(1). 465-478
  138.  Chitsazan, A, oriental journal of chemistry, 2015, 31(1) 393-408


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.