Novel synthesis and characterization of some new-2-(R) phenyl- 4-(4-bromo-2-fluoro benzylidene)-oxazol-5-ones

ALOK K. PAREEK*, P.E. JOSEPH and DAYA S. SETH

School of Chemical Sciences, Department of Chemistry,
ST.John’s College Agra - 282 002 (India).

(Received: April 15, 2010; Accepted: May 20, 2010)

ABSTRACT

In the present study a series of some new 2-(substituted) phenyl- 4-(4-bromo-2-fluoro benzylidene)-oxazol-5-ones (2a-2j) were synthesized by the condensation of selected substituted benzoyl glycine (1a-1j) with 4-bromo-2-fluoro benzaldehyde in the presence of fused sodium acetate and acetic anhydride. The constitution of the newly synthesized compounds has been supported by their physical properties, elemental analysis, colour, m.p, IR spectral analysis data.

Key words: Substituted Oxazolones, Substituted Benzoyl Glycines, Substituted Benzalde-Hyde, Synthesis, Characterization, Spectral data.

INTRODUCTION

The chemistry of oxazolone and it’s derivatives has been studied extensively for last few decades and has received important attraction in the synthesis of heterocycles, many of the substituted oxazolone and it’s derivatives possess a broad spectrum biological activity1.

Some of the novel substituted oxazolones have been reported to possess anti-microbial or anti-tumor2, anti-convulsant3, anti-bacterial4, analgesic5 activities as well as bio-sensors coupling and photo sensitive composition devices of proteins6. Oxazol-5-ones are synthe-sized by the Erylenmeyer condensation as reported in the literature7.

Literature survey reveals that vari-ous oxazolones possess a broad spectrum of activities which are reflected by their use as anti-inflammatory8,9, anticancer10, antiobesity11, anti-depressant12.

EXPERIMENTAL

Material and Methods
All the recorded melting points were determined
In open capillary tubes and are uncorrected . All the chemicals and solvents used in the synthesis are of laboratory grade and solvents were purified. Completion of the reaction was monitored by TLC silica-gel-coated Al-Plates (Merck). IR(infrared) spectrum in Kbr-disc method (cm⁻¹) were recorded on Perkin-Elmer spectrum RX-1 FT-IR spectrophotometer at ST.John’s College Agra. Elemental analysis, physical pro-perties, colour, m.p, yield% of newly synthesized compounds are furnished in Table 1.
Table 1: Physical and Analytical data of Newly Synthesized Compounds (2a-2j)

<table>
<thead>
<tr>
<th>codes</th>
<th>Molecular Formula</th>
<th>Molecular Weight</th>
<th>M.P. °C</th>
<th>Yield %</th>
<th>Colour</th>
<th>% C cal. (found)</th>
<th>% H cal. (found)</th>
<th>%N cal. (found)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2a</td>
<td>C₁₅H₁₄N₂O₅ClBrF₃</td>
<td>380.62</td>
<td>188</td>
<td>44.23</td>
<td>deep yellow</td>
<td>50.49</td>
<td>2.11</td>
<td>3.68</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(50.50)</td>
<td>(2.13)</td>
<td>(3.72)</td>
</tr>
<tr>
<td>2b</td>
<td>C₁₅H₁₄N₂O₅F₁₁Br</td>
<td>391.17</td>
<td>164</td>
<td>36.06</td>
<td>dark orange</td>
<td>49.12</td>
<td>2.06</td>
<td>7.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(49.13)</td>
<td>(2.04)</td>
<td>(7.19)</td>
</tr>
<tr>
<td>2c</td>
<td>C₁₅H₁₄N₂O₅F₁₁Br</td>
<td>391.17</td>
<td>151</td>
<td>29.97</td>
<td>deep orange</td>
<td>49.12</td>
<td>2.06</td>
<td>7.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(49.10)</td>
<td>(2.05)</td>
<td>(7.12)</td>
</tr>
<tr>
<td>2d</td>
<td>C₁₅H₁₄N₂O₅F₁₁Br</td>
<td>436.17</td>
<td>232</td>
<td>57.62</td>
<td>dirty yellow</td>
<td>44.06</td>
<td>1.61</td>
<td>9.63</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(44.07)</td>
<td>(1.62)</td>
<td>(9.66)</td>
</tr>
<tr>
<td>2e</td>
<td>C₁₅H₁₄N₂O₅F₁₁Br</td>
<td>372.21</td>
<td>195</td>
<td>63.72</td>
<td>red</td>
<td>58.08</td>
<td>2.97</td>
<td>3.76</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(58.06)</td>
<td>(2.99)</td>
<td>(3.72)</td>
</tr>
<tr>
<td>2f</td>
<td>C₁₅H₁₄N₂O₅F₁₁Br</td>
<td>346.17</td>
<td>138</td>
<td>60.73</td>
<td>sunrise orange</td>
<td>55.51</td>
<td>2.62</td>
<td>4.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(55.49)</td>
<td>(2.64)</td>
<td>(4.01)</td>
</tr>
<tr>
<td>2g</td>
<td>C₁₅H₁₄N₂O₅F₁₁Br</td>
<td>360.20</td>
<td>158</td>
<td>48.98</td>
<td>dark orange</td>
<td>56.68</td>
<td>3.07</td>
<td>3.88</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(56.66)</td>
<td>(3.04)</td>
<td>(3.91)</td>
</tr>
<tr>
<td>2h</td>
<td>C₁₅H₁₄N₂O₅Cl₁₁Br</td>
<td>425.62</td>
<td>211</td>
<td>55.74</td>
<td>deep mehron red</td>
<td>45.15</td>
<td>1.65</td>
<td>6.58</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(45.17)</td>
<td>(1.63)</td>
<td>(6.61)</td>
</tr>
<tr>
<td>2i</td>
<td>C₁₅H₁₄N₂O₅F₁₁Br</td>
<td>361.18</td>
<td>250</td>
<td>59.79</td>
<td>dark fire red</td>
<td>53.20</td>
<td>2.79</td>
<td>7.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(50.22)</td>
<td>(2.77)</td>
<td>(7.71)</td>
</tr>
<tr>
<td>2j</td>
<td>C₁₅H₁₄N₂O₅F₁₁Br</td>
<td>284.10</td>
<td>197</td>
<td>39.68</td>
<td>dark red</td>
<td>46.50</td>
<td>2.48</td>
<td>4.93</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(45.51)</td>
<td>(2.46)</td>
<td>(4.89)</td>
</tr>
</tbody>
</table>

\[
\text{COOH} \xrightarrow{\text{SOCl}_2} \text{CONHCH}_2\text{COOH} + \text{CHO} \\
\text{subs., benzoic acid} \\
\text{(1a-1j) substituted benzoyl glycine} \\
\text{4-bromo-2-fluoro benzaldehyde} \\
\text{where,} \\
\text{R=} \\
P-\text{Chloro} \quad (1a) \\
P-\text{Nitro} \quad (1b) \\
M-\text{Nitro} \quad (1c) \\
3,5-\text{Di-Nitro} \quad (1d) \\
\text{Cinnamoyl} \quad (1e) \\
\text{Benzoyl} \quad (1f) \\
\text{Phenyl acetyl} \quad (1g) \\
\text{O-Chloro-P-Nitro} \quad (1h) \\
\text{P-Anisidine} \quad (1i) \\
\text{Acetyl} \quad (1j) \\
\text{2- (R)- phenyl- 4(4-bromo-2-fluoro)- oxazol-5-one} \\
\text{(2a-2j)}
\]
General procedure for the synthesis of substituted benzoyl glycine (1a-1j)

A mixture of substituted benzoic acid (0.025 mole) and thionyl chloride (0.05 mole) in a reflux flask having calcium chloride guard tube to the top of the condenser, contents were refluxed on boiling water-bath for about 3-hours, after cooling the liquid was distilled to remove the excess of SOCl₂, glycine (0.025 mole) dissolved in 2N NaOH (25 ml) and substituted acid chloride (0.025 mole) was added in small portions and the flask was shaken vigorously after each addition. The obtained clear solution was acidified with concentrated HCl, thus the obtained solid was collected, filtered, recrystallized from hot water.

General procedure for the synthesis of 2-(substituted) phenyl-4-(4-bromo-2-fluoro benzylidene)-oxazol-5-one (2a-2j)

A mixture of substituted benzaldehyde (4-bromo-2-fluoro; 0.0025 mole) and substituted benzoyl glycine (1a-1j; 0.0025 mole), (0.20 gm) of anhydrous sodium acetate and (0.7 ml) of acetic anhydride was heated on a water-bath for 2-hours, the contents were cooled and then treated with ice-cold water, filtered, again washed with distilled water. The obtained product was purified by recrystallization from absolute ethanol and ethyl acetate.

<table>
<thead>
<tr>
<th>codes</th>
<th>Fur-an-CH cm⁻¹</th>
<th>Ar.-CH cm⁻¹</th>
<th>-C=O cm⁻¹</th>
<th>-N=C cm⁻¹</th>
<th>-C=C cm⁻¹</th>
<th>C-O-C cm⁻¹</th>
<th>CH=C cm⁻¹</th>
<th>C-Cl cm⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>2a</td>
<td>3235.0</td>
<td>3052.2</td>
<td>1658.9</td>
<td>1639.2</td>
<td>1592.2</td>
<td>1178.5</td>
<td>973.0</td>
<td>682.3</td>
</tr>
<tr>
<td>2f</td>
<td>3190.0</td>
<td>3068.5</td>
<td>1722.6</td>
<td>1639.2</td>
<td>1596.8</td>
<td>1171.6</td>
<td>988.7</td>
<td>694.0</td>
</tr>
</tbody>
</table>

RESULTS AND DISCUSSION

The infrared spectra of newly synthesized compounds have been recorded in the frequency region 4000-500 cm⁻¹. The IR (in KBr-disc method)

Spectral data are recorded in the Table-2

The IR spectrum of compounds (2a,2f) showed absorption bands at 3235.0 and 3190.0 cm⁻¹ indicating Fur-an ring -CH, absorption at range 3052.2 and 3068.5 cm⁻¹ shows Ar. CH str., while absorption bands at 1658.9 and 1722.6 cm⁻¹ reveals -C=O stretching vibrations, stretching vibrations at 1639.2 and 1639.2 cm⁻¹ confirm the presence of (oxazolone ring -N=C), while the stretching vibrations at 1592.2 and 1596.8 cm⁻¹ indicates C=C, absorption spectrum at 1176.5 and 1171.6 cm⁻¹ shows C-O-C str., absorption bands at 973.0 and 988.7 cm⁻¹ indicates the presence of CH=C str., while absorption at 682.3 and 694.0 cm⁻¹ indicates the presence of C-Cl linkage. The above observations are sufficient to support the assigned structure of the newly synthesized compounds (2a,2f) and other compounds (2b-2e,2g-2j). The oxazolones are coloured solids and having high melting points.

REFERENCES