INTRODUCTION

During the past years, considerable evidence has been accumulated to demonstrate the efficacy of 2-thioxo-4–thiazolidinone and acetamide derivatives. 2-thioxo-4–thiazolidinone based molecules have been popular as small molecule inhibitors of numerous targets such as anti-convulsant agents1,2, anti-diabetic agents 3, anti-microbial agents4 and histidine decarboxylase5.

Dry ammonia and carbon disulphide in alcohol and ether combined to form ammonium dithiocarbamate, which react with sodium chloroacetate to form rhodanine6(a). Rhodanine on condensation with salicyldehyde and vanililine form hydroxy benzylidine rhodanine6(b1 and b 2). These key intermediates upon O-alkylation with different chloro acetamides (c1- 4) form final derivatives (d1- 8). The title compounds (c 1- 4) have been synthesized via various aromatic amines with chloro acetyl chlorides in acetic acid 8. The physical properties of compounds are presented in Table.1 and Table.2.

MATERIAL AND METHODS

All the chemicals used were AR grade and some were LR grade, procured from various chemical units like Merck, Mumbai, Qualigens, Mumbai; s.d.Fine, Mumbai and CDH-New Delhi. Melting points were determined in open glass capillaries and are uncorrected. The I.R. spectra (KBr disc) were recorded on FTIR-200 Thermo Electron Corporation .1H-NMR spectra were recorded in DMSO using BRUKER AVANCE II 400 NMR spectrometer. The chemical shifts were expressed in δ units in ppm downfield from TMS. The purity and completion of reaction was monitored by TLC using benzene: ethyl acetate, 4:1 solvent system and silica gel-G coated on glass plates used as solid support.
Synthetic study

The scheme of 2-((4-oxo-2-thiazolidin-5-ylidene) methyl) phenoxy) acetamide analogues is given in Fig.1

Synthesis of rhodanine\(^6\) (a)

Dry ammonia passed through an ice-cooled mixture of carbon disulphide (30ml), alcohol (24ml) and ether (24ml) for a period of about 3.5 hrs. The content of flask solidified into a pale yellow cake i.e. ammonium dithiocarbamate. This was further washed with alcohol (5ml), followed by ether (10ml). This was immediately added to a solution of sodium chloroacetate with stirring which in turn prepared by mixing of sodium hydroxide (0.5mol) and chloroacetic acid (0.5mol), the mixture was cooled to 0\(^\circ\)C. At first the solution become dark but on further stirring mixture turned straw like. The above content then finally added to the 36ml of conc. HCl. The mixture was heated to 80\(^\circ\)C for 2min., and then placed the flask to an ice bath for 1hr., glistening pale yellow crystals of rhodanine separated out, filtered and washed with little water and finally recrystallized from alcohol. Yield - 65%; m.p - 169\(^\circ\)C; I.R. Data – 1713(C=O), 1185(C=S), 3091(NH), 1234(C-N), 2839(C-H).

Synthesis of hydroxy benzylidine rhodanine\(^6\) (b\(_1\) and b\(_2\))

Rhodanine (0.02mol) added to the preheated 50ml glacial acetic acid and mixed well to dissolve completely. To this, was added salicyydehde, for b\(_1\), (0.02mol) or vanilline, for b\(_2\), (0.02mol) and fused sodium acetate (1.8g). The completion of reaction was controlled by TLC analysis, and completed in about 45min. The content was then poured in about 1000ml of cold water, the yellow precipitate was separated out, filtered and

Table 1: Characterization data of synthesized compounds c\(_{1-4}\)

<table>
<thead>
<tr>
<th>Compd.</th>
<th>Yield (%)</th>
<th>m.p (°C)</th>
<th>R(_f)</th>
<th>IR data</th>
</tr>
</thead>
<tbody>
<tr>
<td>c(_1)</td>
<td>76</td>
<td>116</td>
<td>0.57</td>
<td>Ar.C-H 3076, Ali.C-H 2834, -CONH 1669, NH 3264, C-N 1395, Ar.C=C 1511</td>
</tr>
<tr>
<td>c(_2)</td>
<td>60</td>
<td>73</td>
<td>0.56</td>
<td>-</td>
</tr>
<tr>
<td>c(_3)</td>
<td>70</td>
<td>126</td>
<td>0.72</td>
<td>Ar.C-H 3010, Ali.C-H 2838, -CONH 1667, NH 3295, C-N 1345, Ar.C=C 1512</td>
</tr>
<tr>
<td>c(_4)</td>
<td>53</td>
<td>150</td>
<td>0.45</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 2: Characterization data of synthesized compounds d\(_{1-8}\)

<table>
<thead>
<tr>
<th>Compd.</th>
<th>Yield (%)</th>
<th>m.p (°C)</th>
<th>R(_f)</th>
<th>(^1)H NMR data</th>
</tr>
</thead>
<tbody>
<tr>
<td>d(_1)</td>
<td>48</td>
<td>256</td>
<td>0.14</td>
<td>Ar-H(m,6.94-7.66),-NHCO- (s,10.01),ring-NH-(s,13.4),-CH=(s,8.07)</td>
</tr>
<tr>
<td>d(_2)</td>
<td>52</td>
<td>248</td>
<td>0.12</td>
<td>-</td>
</tr>
<tr>
<td>d(_3)</td>
<td>42</td>
<td>278</td>
<td>0.16</td>
<td>Ar-H(m,6.94-7.62),-NHCO- (s,10.03),ring-NH-(s,13.2),-CH=(s,7.98),-OCH(_3)(s,4.01)</td>
</tr>
<tr>
<td>d(_4)</td>
<td>44</td>
<td>284</td>
<td>0.13</td>
<td>-</td>
</tr>
<tr>
<td>d(_5)</td>
<td>56</td>
<td>242</td>
<td>0.17</td>
<td>Ar-H(m,6.94-7.62),-NHCO- (s,10.03),ring-NH-(s,13.2),-CH=(s,7.98),-OCH(_3)(s,4.01)</td>
</tr>
<tr>
<td>d(_6)</td>
<td>47</td>
<td>262</td>
<td>0.22</td>
<td>-</td>
</tr>
<tr>
<td>d(_7)</td>
<td>41</td>
<td>269</td>
<td>0.15</td>
<td>Ar-H(m,6.94-7.62),-NHCO- (s,10.03),ring-NH-(s,13.2),-CH=(s,7.98),-OCH(_3)(s,4.01)</td>
</tr>
<tr>
<td>d(_8)</td>
<td>54</td>
<td>272</td>
<td>0.20</td>
<td>-</td>
</tr>
</tbody>
</table>
washed with cold water, dried and recrystallised from glacial acetic acid. (b1) - Yield – 72%; m.p. - 2360C; IR Data- 1694(C=O), 1185(C=S), 1249(C-N), 3170(N-H), 3414(O-H), 1522(C=C), 2910(C-H); (b2) - Yield – 83%; m.p. - 2570C; IR Data- 1703 (C=O), 1163(C=S), 1232(C-N), 3188(N-H), 3452(O-H), 1536(C=C), 2887(C-H), 1076(C-O).

General procedure for synthesis of chloroacetamides4 (c1-4)

Aromatic amines (0.01mol) were dissolved in 10ml of glacial acetic acid containing 50ml of saturated solution of sodium acetate. The solution was cooled in an ice bath and chloroacetyl chloride (0.01mol) was added dropwise to the mixture. The white precipitate separated was filtered, washed with 50% acetic acid and recrystallised from ethanol (Table.1).

General procedure for synthesis of d1-8

The compounds c1-4 (0.01mol) were dissolved in ethanol (10ml), triethylamine (0.01mol) was added to the solution. To this reaction mixture 0.01mol of (b1), for (d1-4), or 0.01 mol of (b2), for

Fig. 1: R = 0-chloro phenyl, -chlorphenyl, o-bromophenyl, p-bromophenyl
(d$_{\text{s-a}}$), was added. The reaction mixture was refluxed and completion of reaction was controlled by TLC analysis, usually completed in about 18-20 hrs. Cooled the reaction mixture, added ice pieces to it and little distilled water, then the product was extracted with ethyl acetate twice, 25ml each time. The ethyl acetate was removed under vacuum to provide crude d$_{\text{s-a}}$ which then recrystallised from ethanol (Table.2).

In-vivo study

Acute toxicity study

All the compounds were screened for acute oral toxicity study according to OECD guidelines9. The compounds synthesized d$_{\text{s-a}}$ were found to have LD$_{50}$ in range 500-600mg/kg b.w. in female mice.

Anti-convulsant studies

The compound d$_{\text{s-a}}$ were screened for their anti-convulsant activity against electroshock-induced convulsion in mice of either sex (weighing 20-30g) by the method given in literature10. The compounds were suspended in 5% gum acacia solution and given orally at a dose of 50mg/kg b.w. After 1hr. the animals subjected to a current of 60mA/50Hz for 0.2sec. and the effect was observed. Compounds d$_1$, d$_2$, d$_3$, d$_4$, d$_5$, d$_6$, d$_7$ and d$_8$ provided 95,70,60,73,57,78,66 and 85% protection respectively against the electroshock-induced convulsion in mice compared to 100% activity of phenytoin (a reference drug) at a dose of 25mg/kg b.w.

RESULT AND DISCUSSION

In present study the compounds d$_{\text{s-a}}$ were synthesized and their physical and spectral analysis was done. Their purity was checked by TLC that gave satisfactory results. The compounds synthesized reflects remarkable anti-convulsant activity by MES method at a lower dose i.e. 50mg/kg b.w. The compounds showed lower toxicity than parent compound (b).

ACKNOWLEDGEMENTS

Authors are thankful to Dr. Raghuveer Irchhaiya, H.O.D, Institute of Pharmacy, Bundelkhand University, Jhansi for providing necessary facilities, Institutional Animal Ethical Committee for providing animal facility and Dr. Arun Nanda, H.O.D., Department of Pharmaceutical Sciences, M.D.University, Rohtak for FTIR facility.

REFERENCES