The One-step Synthesis of C,D-dihydropyrano[F] Chromene Derivatives in Under Grinding as An Environmentally Frinendly Alternative

ABOLGHASEM SHAMELI AKANDI1*, EBRABIM BALALI2, TALIEH MOSAVAT2, MOHAMMAD MEHDI GHANBARI3 and ALI EAZABADI4

1Department of Chemistry, Omidiyeh Branch, Islamic Azad University, Omidiyeh, Iran.
2Department of Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran.
3Department of Chemistry, Sarvestan Branch, Islamic Azad University, Sarvestan, Iran.
4Department of Chemistry, Centeral Tehran Branch, Islamic Azad University, Tehran, Iran.
*Corresponding author E-mail: Shameli678@gmail.com

(Received: March 06, 2014; Accepted: April 12, 2014)

ABSTRACT

1,4-diazabicyclo[2.2.2]octane (DABCO) was used as a catalyst for one-pot, three-component condensation reactions consisting of aromatic aldehydes, malononitrile and β-Naphtol under grinding at room temperature, to afford the corresponding dihydropyrano[c]chromenes in high yields. This method has the advantages of a simple operation, mild reaction conditions, high yields, by using a less toxic and low cost chemical as a catalyst.

Key words: One-step synthesis, Chromene, Environment friendly.

INTRODUCTION

There has been considerable interest in chromenes and their benzoderivatives, not least because of their value for a variety of industrial, biological, and chemical synthetic uses.1 As a result, a large number of methods have appeared describing novel synthesis of these heterocycles.2 2-Amino-4H-benzochromenes have been of interest because of their biological activity3 and a few methods have been reported for their synthesis.4

In this paper we focus on the preparation of 3-amino-1-phenyl-1H-benzo[f]chromene-2-carbonitrile derivatives 4 (Scheme 1) in grinding media.

Due to the diverse biological properties of this compound class, there is a widespread interest in their synthesis. Compounds with an uracil moiety antitumor, antibacterial, antihypertensive, vasodilator, bronchiolodilator, hepatoprotective, cardiotonic, and antiallergic activities. Some of them exhibit antimalarial, antifungal analgesics, and herbicidal properties5-9.
Previous methods for the synthesis of 3-amino-1-phenyl-1H-benzo[f]chromene-2-carbonitrile have been reported in which a two-component reaction between arylidene malononitrile with β-Naphtole occurred under harsh thermal conditions. Also, a microwave-assisted one-pot three-component cyclocondensation of Phenols, benzaldehyde derivatives, and alkylidene in the absence or presence of triethylamine, Diammonium hydrogen phosphate (DAHP) has been reported. These methods exhibit some disadvantages such as: harsh conditions, long reaction times, low yields, and effluent pollution.10

RESULTS AND DISCUSSION

Herein we report a simple synthesis of 3-amino-1-phenyl-1H-benzo[f]chromene-2-carbonitrile as a domino Knoevenagel–Michael condensation, catalyzed by 0.1 eq mol of DABCO in aqueous media at room temperature (Scheme 1). Although we have not yet established the mechanism of the one-pot reaction between benzaldehyde derivatives, malononitrile and β-Naphtole in the presence of DABCO, a possible explanation is presented in Scheme 2. The higher reactivity of the iminium group is utilized to facilitate Knoevenagel condensation between aryl aldehyde 1 and malononitrile 2, which proceeds via intermediate 5. After dehydration, olefin 6 is produced. DABCO also catalyzes the generation of a proposed β-Naphtoxide and this intermediate adds to olefin 5 to generate 4, after proton transfer, tautomerization and hydrolysis of intermediate 7 (Scheme 2 and table 1).

<table>
<thead>
<tr>
<th>Product</th>
<th>Ar</th>
<th>Time (min)</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>4a</td>
<td>3-Chloro -C₆H₄</td>
<td>10</td>
<td>89</td>
</tr>
<tr>
<td>4b</td>
<td>4-Chloro -C₆H₄</td>
<td>8</td>
<td>83</td>
</tr>
<tr>
<td>4c</td>
<td>4-Cyano -C₆H₄</td>
<td>10</td>
<td>91</td>
</tr>
<tr>
<td>4d</td>
<td>2,3- diChloro -C₆H₄</td>
<td>6</td>
<td>96</td>
</tr>
<tr>
<td>4e</td>
<td>3-hydroxy -C₆H₄</td>
<td>14</td>
<td>92</td>
</tr>
<tr>
<td>4f</td>
<td>3-nitro -C₆H₄</td>
<td>12</td>
<td>95</td>
</tr>
<tr>
<td>4g</td>
<td>4-trifluoro -C₆H₄</td>
<td>12</td>
<td>85</td>
</tr>
<tr>
<td>4h</td>
<td>C₆H₅</td>
<td>9</td>
<td>88</td>
</tr>
<tr>
<td>4i</td>
<td>4-dimethyl-amino -C₆H₄</td>
<td>3</td>
<td>92</td>
</tr>
<tr>
<td>4k</td>
<td>4-Br -C₆H₄</td>
<td>9</td>
<td>83</td>
</tr>
</tbody>
</table>

The structures of compounds 4 were deduced from their ¹H NMR, ¹³C NMR and IR spectral data and their molecular weight confirmed by mass spectrometry. ¹H NMR and ¹³C NMR spectroscopy were especially useful to elucidate the structures of products. The mass spectra of these compounds detected the expected molecular ion signals. Selected spectroscopic data have been given in general procedure section. The results obtained in the reaction of a series of representative aldehydes with malononitrile and β-Naphtole. The effect of substituents on the aromatic ring did not show special effects in terms of yields under these reaction conditions. We have developed an easier, practically convenient, novel, ecologically safe method for the synthesis of 3-amino-1-phenyl-1H-benzo[f]chromene-2-carbonitrile derivatives using a green chemistry protocol. We suggest DABCO as a green and effective catalyst that does not use harmful organic solvents for these reactions.

EXPERIMENTAL

All of the chemical materials used in this work were purchased from Merck and Fluka and used without further purification.
determined with an Electro thermal 9100 apparatus and were uncorrected. IR spectra were obtained on an ABB FT-IR (FTLA 2000) spectrometer. 1HNMR and 13C NMR spectra were recorded on a Bruker DRX-300 AVANCE at 300 and 75MHz (respectively) using TMS as internal standard and CDCl$_3$ as solvent. Mass spectra data were obtained using a GC-MS Hewlett Packard (EI, 20 e V) instrument.

Synthesis 3-amino-1-phenyl-1H-benzo[f] chromene-2-carbonitrile derivatives

A solution of aromatic aldehyde 1 (1 mmol), malononitrile 2 (1.2 mmol), β-Naphtole 3 (1 mmol), and 1,4-diazabicyclo[2.2.2]octane (DABCO) (22.4 mg, 20 mol %) in under grinding was stirred at room temperature for 3-15 min. The progress of the reaction was monitored by thin-layer chromatography (TLC). After completion of the reaction, the mixture was then concentrated under reduced pressure, and 5 ml of water/ethanol(1:1) was added. The remaining solid was collected by filtration. Further purification was done by recrystallization in EtOH.

3-amino-1-(3-chlorophenyl)-1H-benzo[f]chromene-2-carbonitrile, mp: 202–204 °C. IR (KBr, cm$^{-1}$) 3431, 3328, 2182, 1646, 1588. 1H NMR (300 MHz, CDCl$_3$, ppm) δ: 5.40 (s, 1H, H-4), 6.34 (brs, 2H, NH$_2$), 7.23–7.38 (m, 5H, H-Ar), 7.44–7.48 (m, 2H, H-Ar), 7.87–7.98 (m, 2H, H-Ar). 13C

Scheme 1: Synthesis 3-amino-1-phenyl-1H-benzo[f] chromene-2-carbonitrile by 20% DABCO in under grinding

Scheme 2: The proposed mechanism for the synthesis of 3-amino-1-phenyl-1H-benzo[f]chromene-2-carbonitrile in under grinding catalyzed by 1,4-diazabicyclo[2.2.2]octane (DABCO)
NMR (75 MHz, CDCl$_3$, ppm) δ 59.08, 111.50, 115.09, 118.33, 119.49, 120.66, 120.86, 123.38, 123.93, 124.64, 126.48, 126.59, 127.67, 133.27, 137.20, 143.06, 145.77, 147.60, 159.89. HR-MS (70 eV, El): C$_{20}$H$_{13}$N$_{2}$O$_{35}$Cl [M$^+$] found 332.0705; calc. 332.0716; C$_{20}$H$_{13}$N$_{2}$O$_{37}$Cl [M +2$^+$] found 334.0695; calc. 334.0703.

3-amino-1-(4-chlorophenyl)-1H-benzo[f]chromene-2-carbonitrile, mp: 206–208 °C. IR (KBr, cm$^{-1}$) 3409, 3322, 2223, 1630, 1586. H NMR (300 MHz, CDCl$_3$, ppm) δ: 5.36 (s, 1H, H-4), 7.11 (brs, 2H, NH$_2$), 7.25 (d, 1H, J=8.4 Hz, H-Ar), 7.29 (d, 1H, J=8.4 Hz, H-Ar), 7.35 (d, 1H, J=8.9 Hz, H-Ar), 7.48 (m, 3H, J=8.2 Hz, H-Ar), 7.88 (d, 1H, J=7.8 Hz, H-Ar), 7.92 (d, 1H, J=9.0 Hz, H-Ar), 7.94 (d, 1H, J=9.0 Hz, H-Ar), 13C NMR (75 MHz, CDCl$_3$, ppm) δ: 61.18, 112.37, 113.48, 114.40, 116.68, 123.58, 125.28, 127.40, 128.56, 129.13, 129.27, 129.92, 30.08, 131.43, 131.86, 147.10, 158.34, 158.68. HR-MS (70 eV, El): C$_{20}$H$_{13}$N$_{2}$O$_{35}$Cl [M$^+$] found 332.0705; calc. 332.0716; C$_{20}$H$_{13}$N$_{2}$O$_{37}$Cl [M +2$^+$] found 334.0695; calc. 334.0703.

3-amino-1-(3-hydroxyphenyl)-1H-benzo[f]chromene-2-carbonitrile, mp: 280–282 °C. IR (KBr, cm$^{-1}$) 3419, 3327, 2187, 1642, 1586. H NMR (300 MHz, CDCl$_3$, ppm) δ: 5.40 (s, 1H, H-4), 6.23 (brs, 2H, NH$_2$), 6.63–6.67 (m, 2H, H-Ar), 7.10 (t, 1H, J=7.8 Hz, H-Ar), 7.34 (d, 1H, J=8.9 Hz, H-Ar), 7.40–7.49 (m, 2H, H-Ar), 7.92 (t, 3H, J=8.9 Hz, H-Ar), 8.35 (brs, 1H, OH), 13C NMR (75 MHz, CDCl$_3$, ppm) δ: 59.58, 110.55, 114.10, 115.04, 116.83, 118.32, 119.00, 120.66, 121.78, 122.99, 123.93, 125.60, 127.85, 129.05, 130.37, 130.52, 130.89, 131.31, 134.17, 147.42, 148.33, 148.44, 160.44. HR-MS (70 eV, El): C$_{20}$H$_{12}$N$_{2}$O$_{35}$Cl$_2$ [M$^+$] found 366.0319; calc. 366.0327; C$_{20}$H$_{12}$N$_{2}$O$_{37}$Cl$_2$ [M$^+$] found 366.0319; calc. 366.0327.
3-amino-1-(phenyl)-1H-benzo[f]chromene-2-carbonitrile, mp: 288-290°C. IR (KBr, cm⁻¹) 3450, 3345, 2180, 1640, 1580. ¹H NMR (300 MHz, CDCl₃, ppm) δ: 5.30 (s, 1H, H-4), 6.8 (brs, 2H, NH₂), 7.23–7.38 (m, 5H, H-Ar), 7.44–7.48 (m, 5H, H-Ar). ¹³C NMR (75 MHz, CDCl₃, ppm) δ: 59.08, 111.50, 115.09, 118.33, 119.49, 120.66, 120.86, 123.38, 123.93, 126.44, 126.48, 126.59, 127.67, 128.27, 130.20, 143.06, 145.77, 147.60, 159.89. HR-MS (70 eV , EI): C₂₀H₁₄N₂O [M]+ found: 298.11; calc. 298.09

ACKNOWLEDGEMENTS

The authors would like to acknowledge the support provided by the Research Council of Islamic Azad University.

REFERENCES

 b) Hepworth, J. D.; Gabbutt, C. D.; Heron, B. M.; 1st ed. *Comprehensive Heterocyclic Chemistry*;

 c) S. Abdolmohammadi, S. Balalaie, ChemInform, 2007; 38: 33