INTRODUCTION

Flavones constitute a large subgroup of naturally occurring flavonoids and are widely distributed plant pigments. Flavones occur in nature in free state with varieties of substitution pattern. In recent years, much attention has been paid to the synthesis of flavones because of their various physiological and pharmacological properties. Flavones are known to be coronary dilator, antiphlogistic, chloenic and histamine activity, heart stimulant, control of cytotoxicity towards human nasopharynx carcinomacell, cancer preventive agents and regulate plant growth by inhabitation of exocytosis of the auxin indolyl acetic acid.

Oxidative cyclisation of 2'-hydroxy chalcones constitutes an important route for the synthesis of flavones and number of oxidizing agents such as SeO_2, DDQ, oxalic acid, I_2, DMSO, Sodium periodate, FeCl_3 etc. have been reported in literature for this conversion but these often require longer reaction time and formation of mixture of product containing flavones, flavanones and aurones have been reported in some cases.

MATERIAL AND METHODS

All the chemicals were purchased from Aldrich and Fluka. Melting points were determined in open capillary tubes. IR (KBr) spectra were recorded in a Perkin-Elmer Spectrum BX series FT-IR spectrophotometer and ^1^H NMR on Bruker.

Oxidative cyclisation of 2'-hydroxy chalcones using Sodium Tellurite: Synthesis of Flavones

SURENDER KUMAR⁴ and DINESH SHARMA⁵

⁴Department of Chemistry, Technological Institute of Textile and Sciences, Bhiwani - 127 021 (India).
⁵Department of Chemistry, BRCM College of Engineering and Technology, Bahal - 127 028 (India).

s_kaushik4@rediffmail.com, dksharma_84@rediffmail.com

(Received: March 14, 2011; Accepted: April 18, 2011)

ABSTRACT

A simple and very efficient method for the oxidative cyclisation of 2'-hydroxy chalcones with sodium tellurite in dimethylsulphoxide has been developed which could provide a simple route for the synthesis of flavones and also the required compound obtained as the sole product in a very high yield.

Key words: Flavones, 2'-hydroxy chalcones, sodium tellurite, dimethylsulphoxide, oxidative cyclisation.
Avance II 400 MHz instrument using tetramethylsilane as an internal standard.

Experimental Procedure (General)

A solution of 2'-hydroxychalcone in dimethylsulphoxide and sodium tellurite were heated in round bottom flask with air condenser and calcium chloride guard tube in an oil bath at 130-400°C for one hour. The completion of the reaction was checked on TLC. The reaction mixture was poured over crushed ice, stirred and extracted with ether and solvent removed by distillation. The residue was crystallized from aqueous methanol to give flavone.

RESULTS AND DISCUSSION

Herein, we wish to report the oxidative cyclisation of 2'-hydroxychalcones with sodium tellurite in DMSO, which could provide an efficient and simple route for the synthesis of flavones and also the required compound obtained as a sole product in a very high yield.

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>R₁</th>
<th>R₂</th>
<th>R₃</th>
<th>m.p. (°C)</th>
<th>Lit m.p. (°C)</th>
<th>yield %</th>
<th>IRν cm⁻¹</th>
<th>¹H-NMR (CDCl₃) δ, ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ila</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>95-96</td>
<td>96-97¹</td>
<td>80</td>
<td>1620</td>
<td>δ6.65(s,1H,H-3), 7.20-7.85 (bm,8H,C₆H₅,H-6,H-7&H-8), and 8.10(d J=9.0Hz,1H,H-5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>δ3.90(s,1H,H-3), 7.0- (d J=9.0Hz, 2H,H-3' & H-5'), 7.25-7.55 (bm,3H,H-6,H-7&H-8), 7.80 (d J=9.0Hz 2H,H-2'& H-6') and 8.20 (d J=9.0 Hz,1H,H-5)</td>
</tr>
<tr>
<td>Ilb</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>156-57</td>
<td>157-58¹⁶</td>
<td>75</td>
<td>1625</td>
<td>δ3.95(s,3H,OCH₃), 6.70 (s,1H,H-3), 7.0- (d J=9.0Hz, 2H,H-3' & H-5'), 7.25-7.55 (bm,3H,H-6,H-7&H-8), 7.80 (d J=9.0Hz 2H,H-2'& H-6') and 8.20 (d J=9.0 Hz,1H,H-5)</td>
</tr>
<tr>
<td>Ilc</td>
<td>OCH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>108-10</td>
<td>110¹⁷</td>
<td>80</td>
<td>1630</td>
<td>δ3.95(s,3H,OCH₃), 6.70 (s,1H,H-3), 6.90-8.0 (bm,7H, C₆H₅,H-6& H-8) and 8.10(d J=9.0Hz,1H,H-5)</td>
</tr>
<tr>
<td>IId</td>
<td>OCH₃</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>142-43</td>
<td>145¹⁸</td>
<td>70</td>
<td>1638</td>
<td>δ3.90(s,6H,2 x OCH₃), 6.65 (s,1H,H-3), 6.85-7.40 (m,4H,H-6,H-8, H-3'& H-5'), 7.85 (d J=9.0Hz,2H,H-2'& H-6') and 8.10(d J=9.0 Hz,1H,H-5)</td>
</tr>
<tr>
<td>Ilf</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>120-21</td>
<td>122¹⁵</td>
<td>65</td>
<td>1625</td>
<td>δ2.45(s,3H,CH₃), 6.90 (s,1H,H-3), 7.30 -7.90(bm,6H C₆H₅,&H-8) and 8.0 (m 2H,H-5 & H-7)</td>
</tr>
<tr>
<td>Ilg</td>
<td>CH₃</td>
<td>H</td>
<td>OCH₃</td>
<td>H</td>
<td>169-70</td>
<td>170¹⁸</td>
<td>70</td>
<td>1635</td>
<td>δ2.30(s,3H,CH₃), 3.75 (s,3H, OCH₃), 6.60 (s,1H, H-3), 6.70(d J=9.0Hz,2H, H-3'& H-5') , 7.30 (b.s,2 H, H-7 & H-8) , 7.55 (d J=9.0Hz,2H,H-2' & H-6') 7.90. 21(s,1H,H-5)</td>
</tr>
<tr>
<td>Ilh</td>
<td>H</td>
<td>H</td>
<td>OCH₃</td>
<td>OCH₃</td>
<td>154-55</td>
<td>156¹⁹</td>
<td>70</td>
<td>1625</td>
<td>δ3.96&3.97(each s of 3H,2 x OCH₃), 6.80 (s,1H, H-3), 6.87-7.80 (m,6H,H-6,H-7, H-8,H-2' H-5'& H-6') and 8.10(d J=8.0 Hz,1H,H-5)</td>
</tr>
</tbody>
</table>
2'-hydroxychalcone was heated with sodium tellurite in dimethyl sulphoxide at 130-40 °C under anhydrous conditions and starting compound was found to have reacted completely after one hour when the reaction was checked on TLC (Scheme 1). On working up the reaction mixture, a colorless compound (m.p. 96-97°C) was obtained in 80% yield, which showed a singlet at δ 6.65 for one proton (H-3) and multiplet at δ 7.20-7.85 for eight protons along with a doublet at δ 8.10 for one proton (H-5) in its 1H-NMR. Based upon the above data the compound was identified as flavone. Using above procedure various substituted flavones were synthesized.

Scheme 1

REFERENCES