The Effects of TiO$_2$ Nanoparticles over Time on the Physical and Mechanical Properties of White Cotton Fabrics and Fabrics Died with Reactive Dyes

MOHAMMADREZA MIRKHAM1, MOHAMMAD ESMAIL YAZDANSHENAS2, RAMIN KHAJAVI3 and MOHAMMAD MIRJALILI4

1PhD. Candidate in Textile Engineering, Department of Polymer and Textile, Yazd Branch, Islamic Azad University, Yazd, Iran.
2Faculty member at Textile Engineering, Department of Polymer and Textile, Yazd Branch, Islamic Azad University, Yazd, Iran.
3Department of Polymer and Textile, South Tehran Branch, Islamic Azad University, Tehran, Iran.
4Department of Polymer and Textile Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran.
*Corresponding author E-mail: enoor_2006@yahoo.com

http://dx.doi.org/10.13005/ojc/320245
(Received: March 12, 2016; Accepted: April 19, 2016)

ABSTRACT

Today, nanoparticles of titanium are used mainly in the textile industry. Examples of it can be named as cultivation of nanoparticles of titanium on polyester cotton fabrics, with features as white-washing, self-cleaning and also the effect of TiO$_2$ on the dyed textiles with natural dyes as well as the effect of commodities reactive to increase the brightness and transparency of them. But, as this procedure has the added benefits, it will sure have some disadvantages and thus, the aim of this project is to study the effects of nano-TiO$_2$ in the passage of time, at different times over the physical and mechanical properties of checked cotton fabrics. And even the study of dyed fabrics with natural dyes in reactive so that it can examine the beneficial and harmful effects of the degradation and also check the results on the Cotton Nano TiO$_2$ Fabric.

Keywords: Textile, Dyed Fabrics, Nano TiO$_2$ Fabric, Nano particles of Titanium.

INTRODUCTION

The main challenge for the textile industry today is modify production methods, so they are more ecologically friendly at a competitive price, by using safer dyes and chemicals and by reducing cost of effluent treatment/disposal1. Dyes are introduced into the environment as a result of several man-made activities1. The textile industry accounts for the largest consumption of dyestuffs, at nearly 80% (Easton J.R). The use of solar radiation for the photocatalytic oxidation of organic contaminants in waste water is fast developing application2. In this regard, the heterogeneous photocatalytic oxidation processes...
has been extensively used in the literature for the degradation of dyes[3,4]. Photocatalytic treatments are based on in situ generation of highly reactive hydroxyl radicals. These radicals are high oxidant species; they attack the most of organic molecules. They are also characterized by low selectivity of attack which is useful characteristic for an oxidant used in wastewater treatment. In the last decade, most attention has been given to TiO\textsubscript{2} due to its high photocatalytic activity, low cost, nontoxicity and high stability in aqueous solution[3]. Nanoparticles TiO\textsubscript{2} is generally considered to be the best photocatalyst and has the ability to detoxificate water from a number of organic pollutants[5]. Many studies have been reported related with textile dye and textile wastewater degradation using TiO\textsubscript{2} as a catalyst[6-8]. Only a handful studies have been attempted which compare the efficiency of different catalysts for a particular dye under identical conditions[9-13].

In this project it is tried to assess the impact of the TiO\textsubscript{2} nanoparticles over the passage of time, at different times on the physical and mechanical properties of cotton fabrics. And even it tries to study dyed fabrics with natural dyes in reactive dyes, so that it can check the degradation and also beneficial and harmful effects on the TiO\textsubscript{2} Nano cotton fabric.

Coupling of two semiconductors

Coupling of two semiconductors with different energy levels causes more effective separation of the charge. Hole created in the layer of cadmium sulfide capacity remains, but the electrons immigrate to the conduction band of titanium dioxide.
Research goals

The overall objective of this study was to achieve the following results:

1. Determining the decline of mechanical properties of fabric with nano-TiO$_2$ particles over the time of at least 6 months.
2. Determining the effect of TiO$_2$ nanoparticles on dyed fabrics with reactive dyes over time.
3. Comparing normal light radiation and UV light falling on the physical and mechanical properties of white and dyed fabrics as well as fabrics containing TiO$_2$ nanoparticles.

that has lower levels and causes the separation of the charge and improvement the efficiency of optical catalyst (Fig. 1)
Hypotheses
1. It is assumed that nano-TiO$_2$ particles for their photo-catalytic properties and because they result in oxidation and reduction reactions, they can affect the physical and mechanical properties of fibers, and that the fibers are classified in the organic materials category, this hypothesis is strengthened because organic materials are more sensitive in compare with oxidizers and regenerative inorganic materials$^{14-18}$.

2. On the other hand, since the TiO$_2$ has photocatalytic properties, it can affect the stability of the light on colored fabrics. Especially, if light of stability was tested by lamps with UV spectrum such as xenon lamps.

Data collection tools
Test collection tools in this research included: tables, sampling, laboratory and online databases and articles.

Findings from data analysis
Back from wrinkles
Figure 2 shows the crease recovery in the weft direction among the samples of white, yellow, white treated with TiO$_2$ and yellow treated with TiO$_2$ under UV and figure 3 shows the crease recovery in the warp direction among the samples of white, yellow, white treated with TiO$_2$ and yellow treated with TiO$_2$ under UV$^{19-21}$.

Fig. 8: Comparison of the tensile strength on dyed samples treated with and without TiO$_2$ under UV

Fig. 9: Comparison of the tensile strength on white samples treated with and without TiO$_2$ under UV

Fig. 10: Comparison of the strain on dyed samples treated with and without TiO$_2$ under UV

Fig. 11: Comparison of the strain strength on white samples treated with and without TiO$_2$ under UV
Flexural stiffness

According to figure 4 and 5, flexural stiffness of white fabrics operations has decreased a lot with increasing duration of UV, but after 48 minute intervals, samples go on a uniformity process.

Samples with TiO$_2$ have had more flexural stiffness.

Strength gauge

According to figures 6 to 11, the tensile strength and force and strain in dyed samples,

CONCLUSION

The results from the experiments are as follows:

1. The results showed that TiO$_2$ caused the white samples fading out more i.e. The presence of TiO$_2$ in white samples has led to higher reflection.
2. The presence of TiO$_2$ has led to more reflection on the yellow stuff.
3. UV operations in samples without TiO$_2$ have increased the color strength.
4. UV operations in the presence of TiO$_2$ decreased the strength of color and led to reflectance in samples.
5. The force level in dyed samples was higher and also, the samples with TiO$_2$ had less force.
6. The tensile strength is greater in dyed samples, but by adding TiO$_2$ this trend has reversed. The strain in white samples was higher and by adding TiO$_2$ this trend has been reversed.
7. The tensile strength, force and strain in dyed samples, initially in a period of 48 minutes in samples with TiO$_2$ were higher than in samples without TiO$_2$. But after a period of 48 minutes, it was reversed. So that after 196 minutes, this trend continued almost to its original state with a slight slope. After 98 minutes, the trend goes on a stable process.

The samples containing TiO$_2$ had more flexural stiffness.

REFERENCES

11. Kansal S.K., Singh M. & Sud D., Studies on

17. Mohammad Mirjalili, Niloofar Yaghmaei and Marjan Mirjalili, Antibacterial properties of nano silver finish cellulose fabric, J Nanostruct Chem, 2013, 3,43

